Reputation: 51
I'm trying to write a predicate that calculates which destination a group of friends will visit. The friends list their countries of preferences like this
choice(marie, [peru,greece,vietnam]).
choice(jean, [greece,peru,vietnam]).
choice(sasha, [vietnam,peru,greece]).
choice(helena,[peru,vietnam,greece]).
choice(emma, [greece,peru,vietnam]).
I want to write a predicate called where that takes 2 arguments to perform the calculation. The formula I have in mind is that the first country is worth 3 points, the second one is worth 2 points, and the last one is worth 1 point.
Here's an example of what I'm trying to achieve.
?- where([marie,jean,sasha,helena,emma],Country).
peru .
So far I have this
where([], X).
where([H|T], N) :- choice(H, [A|B]), where(T,N).
It lets me iterate through all the different friends and shows their choices but I can't iterate through the list of choices and assign points to the destinations.
How should I go about iterating through the list of choices for each friend and assigning points to calculate the best destination?
Upvotes: 0
Views: 228
Reputation: 24996
While this will solve your problem, I know it uses many predicates that you have not seen. So think of this an opportunity to excel and learn a lot.
Even if you don't understand it all, there is enough detail and intermediate results in the test that you should be able to navigate your way to a proper solution you create.
Also this is by no means efficient, it was just a quick proof of concept I did to see how this could be done.
choice(marie, [peru,greece,vietnam]).
choice(jean, [greece,peru,vietnam]).
choice(sasha, [vietnam,peru,greece]).
choice(helena,[peru,vietnam,greece]).
choice(emma, [greece,peru,vietnam]).
destinations(Destinations) :-
findall(D1,choice(_,D1),D2),
flatten(D2,D3),
list_to_set(D3,Destinations).
init_weights(Destinations,Weights) :-
empty_assoc(Assoc),
init_weights(Destinations,Assoc,Weights).
init_weights([],Weights,Weights).
init_weights([H|T],Assoc0,Weights) :-
put_assoc(H,Assoc0,0,Assoc1),
init_weights(T,Assoc1,Weights).
update_weights([C1,C2,C3],Weights0,Weights) :-
del_assoc(C1,Weights0,Value0,Weights1),
Value1 is Value0 + 3,
put_assoc(C1,Weights1,Value1,Weights2),
del_assoc(C2,Weights2,Value2,Weights3),
Value3 is Value2 + 2,
put_assoc(C2,Weights3,Value3,Weights4),
del_assoc(C3,Weights4,Value4,Weights5),
Value5 is Value4 + 1,
put_assoc(C3,Weights5,Value5,Weights).
person_weight(Person,Weights0,Weights) :-
choice(Person,[C1,C2,C3]),
update_weights([C1,C2,C3],Weights0,Weights).
people(People) :-
findall(Person,choice(Person,_),People).
choice(Destination) :-
destinations(Destinations),
init_weights(Destinations,Weights0),
people(People),
update_choices(People,Weights0,Weights1),
cross_ref_assoc(Weights1,Weights),
max_assoc(Weights, _, Destination),
true.
cross_ref_assoc(Assoc0,Assoc) :-
assoc_to_list(Assoc0,List0),
maplist(key_reverse,List0,List),
list_to_assoc(List,Assoc).
key_reverse(Key-Value,Value-Key).
update_choices([],Weights,Weights).
update_choices([Person|People],Weights0,Weights) :-
person_weight(Person,Weights0,Weights1),
update_choices(People,Weights1,Weights).
Tests
:- begin_tests(destination).
test(destinations) :-
destinations([peru, greece, vietnam]).
test(init_weights) :-
destinations(Destinations),
init_weights(Destinations,Weights),
assoc_to_list(Weights,[greece-0, peru-0, vietnam-0]).
test(update_weights) :-
destinations(Destinations),
init_weights(Destinations,Weights0),
update_weights([peru,greece,vietnam],Weights0,Weights),
assoc_to_list(Weights,[greece-2,peru-3,vietnam-1]).
test(person_weight) :-
destinations(Destinations),
init_weights(Destinations,Weights0),
person_weight(jean,Weights0,Weights),
assoc_to_list(Weights,[greece-3,peru-2,vietnam-1]).
test(people) :-
people([marie,jean,sasha,helena,emma]).
test(update_choices) :-
destinations(Destinations),
init_weights(Destinations,Weights0),
people(People),
update_choices(People,Weights0,Weights),
assoc_to_list(Weights,[greece-10,peru-12,vietnam-8]).
test(cross_ref_assoc) :-
List0 = [1-a,2-b,3-c],
list_to_assoc(List0,Assoc0),
cross_ref_assoc(Assoc0,Assoc),
assoc_to_list(Assoc,[a-1,b-2,c-3]).
test(choice) :-
choice(peru).
:- end_tests(destination).
Upvotes: 2
Reputation: 60034
As suggested by GuyCoder, you need an accumulator to sum each person preferences, and foldl/N allows to does exactly this.
choice(marie, [peru,greece,vietnam]).
choice(jean, [greece,peru,vietnam]).
choice(sasha, [vietnam,peru,greece]).
choice(helena,[peru,vietnam,greece]).
choice(emma, [greece,peru,vietnam]).
where(People,Where) :-
foldl([Person,State,Updated]>>(choice(Person,C),update(State,C,Updated)),
People,
[0=greece,0=peru,0=vietnam],
Pref),
aggregate(max(S,S=W),member(S=W,Pref),max(_,_=Where)).
% sort(Pref,Sorted),
% last(Sorted,_=Where).
update(S0,[A,B,C],S3) :-
update(S0,3,A,S1),
update(S1,2,B,S2),
update(S2,1,C,S3).
update(L,V,C,U) :-
append(X,[Y=C|Z],L),
P is Y+V,
append(X,[P=C|Z],U).
I have left commented the last two goals replaced by the single goal aggregate/3, so you can try to understand the syntax...
Upvotes: 1