Reputation: 477
I convert the following df into bins using pd.cut in following:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0,100,size=(5, 4)), columns=list('ABCD'))
print(df)
newDF = pd.cut(df.A, 2, precision=0)
print(newDF)
A B C D
0 83 43 99 85
1 6 57 44 45
2 5 72 10 53
3 24 50 23 18
4 75 25 96 27
0 (44.0, 83.0]
1 (5.0, 44.0]
2 (5.0, 44.0]
3 (5.0, 44.0]
4 (44.0, 83.0]
Is there any way to return the lower bound or upper bound of the range instead of the whole range? For example, from the above example:
0 44.0
1 5.0
2 5.0
3 5.0
4 44.0
Upvotes: 3
Views: 2655
Reputation: 294228
This isn't too much different that @ansev's answer. However, I really wanted an IntervalDtype
accessor for pd.Series
objects so that this sort of thing would work.
# THIS IS NOT REAL!
# JUST AN EXAMPLE
# OF WHAT I WANT
newDF.astype(pd.IntervalDtype()).interval.left
So, in search for such a thing, I came across the same things as @ansev. I'd expect this to change in the future. I suspect they will add an IntervalDtype
accessor (maybe).
I'll offer a simple list comprehension. What this offers is a simple solution without creating additional pandas objects.
cats = newDF.cat.categories
codes = newDF.cat.codes
pd.Series([cats[code].left for code in codes], newDF.index)
0 54.0
1 54.0
2 14.0
3 14.0
4 54.0
dtype: float64
Upvotes: 0
Reputation: 150735
For numerical values, if you pass a constant to bins
, pd.cut
will just cut for np.linspace(min,max, bins+1)
. So
bins = 2
interval_bins = np.linspace(df.A.min(), df.A.max(),bins+1)
lefts = interval_bins[:-1]
rights = inteval_bins[1:]
Upvotes: 3
Reputation: 30920
Use Series.map
:
pd.cut(df.A, 2, precision=0).map(lambda x: x.left)
s = pd.cut(df.A, 2, precision=0)
pd.Series(data=pd.IntervalIndex(s).left, index = s.index)
#print(df)
#
#
# A B C D
#0 26 70 28 2
#1 49 42 56 28
#2 48 26 40 19
#3 3 50 17 3
#4 20 34 54 42
#
#
#pd.cut(df.A, 2, precision=0).map(lambda x: x.left)
#
#0 3.0
#1 26.0
#2 26.0
#3 3.0
#4 3.0
#Name: A, dtype: category
#Categories (2, float64): [3.0 < 26.0]
Upvotes: 4