Reputation: 519
a portion of one column 'relatedWorkOrder' in my dataframe looks like this:
{'number': 2552, 'labor': {'name': 'IA001', 'code': '70M0901003'}...}
{'number': 2552, 'labor': {'name': 'IA001', 'code': '70M0901003'}...}
{'number': 2552, 'labor': {'name': 'IA001', 'code': '70M0901003'}...}
My desired output is to have a column 'name','labor_name','labor_code' with their respective values. I can do this using regex extract and replace:
df['name'] = df['relatedWorkOrder'].str.extract(r'{regex}',expand=False).str.replace('something','')
But I have several dictionaries in this column and in this way is tedious, also I'm wondering if it's possible doing this through accessing the keys and values of the dictionary
Any help with that?
Upvotes: 0
Views: 35
Reputation: 36239
You can join the result from pd.json_normalize
:
df.join(pd.json_normalize(df['relatedWorkOrder'], sep='_'))
Upvotes: 2