Reputation:
I am trying to read data from a csv file into a numpy array. Since the csv file contains empty fields, I read all of the data into an array of dtype=str
, and plan to convert rows/columns into appropriate numerical types. The example below is my unsuccessful at converting these array dtypes.
import numpy as np
x = np.array([
['name', 'property', 'value t0', 'value t1', 'value t2'],
['a', 0.5, 1, 2, 3],
['b', 0.2, 5, 10, 100],
['c', 0.7, 3, 6, 9],
], dtype=str)
First, let's view the original array.
# print("\n .. x (shape={}, dtype={}):\n{}\n".format(x.shape, x.dtype, x))
[['name' 'property' 'value t0' 'value t1' 'value t2'] ['a' '0.5' '1' '2' '3'] ['b' '0.2' '5' '10' '100'] ['c' '0.7' '3' '6' '9']]
Then, let's make sure the numerical entries (taken from the first row down and second column right) can be converted into type <int>
.
# print(x[1:, 2:].astype(int))
[[ 1 2 3] [ 5 10 100] [ 3 6 9]]
So, I tried to put these concepts together.
# # x[1:, 2:] = x[1:, 2:].astype(int)
# x[1:, 2:] = np.array(x[1:, 2:], dtype=int)
print(x)
[['name' 'property' 'value t0' 'value t1' 'value t2'] ['a' '0.5' '1' '2' '3'] ['b' '0.2' '5' '10' '100'] ['c' '0.7' '3' '6' '9']]
Why are the selected entries remaining strings? I saw similar questions posted, for which the accepted solution appears to be using named-fields. But, I prefer numerical indexing to named-fields for my use-case.
Upvotes: 1
Views: 748
Reputation: 231335
In [83]: alist = [
...: ['name', 'property', 'value t0', 'value t1', 'value t2'],
...: ['a', 0.5, 1, 2, 3],
...: ['b', 0.2, 5, 10, 100],
...: ['c', 0.7, 3, 6, 9],
...: ]
In [84]: alist
Out[84]:
[['name', 'property', 'value t0', 'value t1', 'value t2'],
['a', 0.5, 1, 2, 3],
['b', 0.2, 5, 10, 100],
['c', 0.7, 3, 6, 9]]
In [85]: np.array(alist)
Out[85]:
array([['name', 'property', 'value t0', 'value t1', 'value t2'],
['a', '0.5', '1', '2', '3'],
['b', '0.2', '5', '10', '100'],
['c', '0.7', '3', '6', '9']], dtype='<U8')
object array:
In [87]: np.array(alist, dtype=object)
Out[87]:
array([['name', 'property', 'value t0', 'value t1', 'value t2'],
['a', 0.5, 1, 2, 3],
['b', 0.2, 5, 10, 100],
['c', 0.7, 3, 6, 9]], dtype=object)
structured array:
In [88]: np.array([tuple(row) for row in alist[1:]], dtype='U1,f,i,i,i')
Out[88]:
array([('a', 0.5, 1, 2, 3), ('b', 0.2, 5, 10, 100),
('c', 0.7, 3, 6, 9)],
dtype=[('f0', '<U1'), ('f1', '<f4'), ('f2', '<i4'), ('f3', '<i4'), ('f4', '<i4')])
pandas:
In [90]: import pandas as pd
In [91]: pd.DataFrame(alist[1:], columns=alist[0])
Out[91]:
name property value t0 value t1 value t2
0 a 0.5 1 2 3
1 b 0.2 5 10 100
2 c 0.7 3 6 9
Upvotes: 2