Reputation: 25
I have a large dataset with many columns of numeric data and want to be able to count all the zeros in each of the rows. The following will generate a small sample of the data.
df = pd.DataFrame(np.random.randint(0, 3, size=(8,3)),columns=list('abc'))
df
While I can create a column to sum all the values in the rows with the following code:
df2=df.sum(axis=1)
df2
And I can get a count of the zeros in a column:
df.loc[df.a==1].count()
I haven't been able to figure out how to get a count of the zeros across each of the rows. Any assistance would be greatly appreciated.
Upvotes: 1
Views: 72
Reputation: 862851
For count matched values is possible use sum
of True
s of boolean mask.
If need new column:
df['sum of 1'] = df.eq(1).sum(axis=1)
#alternative
#df['sum of 1'] = (df == 1).sum(axis=1)
Sample:
np.random.seed(2020)
df = pd.DataFrame(np.random.randint(0, 3, size=(8,3)),columns=list('abc'))
df['sum of 1'] = df.eq(1).sum(axis=1)
print (df)
a b c sum of 1
0 0 0 2 0
1 1 0 1 2
2 0 0 0 0
3 2 1 2 1
4 2 2 1 1
5 0 0 0 0
6 0 2 0 0
7 1 1 1 3
If need new row:
df.loc['sum of 1'] = df.eq(1).sum()
#alternative
#df.loc['sum of 1'] = (df == 1).sum()
Sample:
np.random.seed(2020)
df = pd.DataFrame(np.random.randint(0, 3, size=(8,3)),columns=list('abc'))
df.loc['sum of 1'] = df.eq(1).sum()
print (df)
a b c
0 0 0 2
1 1 0 1
2 0 0 0
3 2 1 2
4 2 2 1
5 0 0 0
6 0 2 0
7 1 1 1
sum of 1 2 2 3
Upvotes: 1