Reputation: 17144
I have been attempting to solve a problem for hours and stuck on it. Here is the problem outline:
import numpy as np
import pandas as pd
df = pd.DataFrame({'orderid': [10315, 10318, 10321, 10473, 10621, 10253, 10541, 10645],
'customerid': ['ISLAT', 'ISLAT', 'ISLAT', 'ISLAT', 'ISLAT', 'HANAR', 'HANAR', 'HANAR'],
'orderdate': ['1996-09-26', '1996-10-01', '1996-10-03', '1997-03-13', '1997-08-05', '1996-07-10', '1997-05-19', '1997-08-26']})
df
orderid customerid orderdate
0 10315 ISLAT 1996-09-26
1 10318 ISLAT 1996-10-01
2 10321 ISLAT 1996-10-03
3 10473 ISLAT 1997-03-13
4 10621 ISLAT 1997-08-05
5 10253 HANAR 1996-07-10
6 10541 HANAR 1997-05-19
7 10645 HANAR 1997-08-26
I would like to select all the customers who has ordered items more than once WITHIN 5 DAYS.
For example, here only the customer ordered within 5 days of period and he has done it twice.
I would like to get the output in the following format:
customerid initial_order_id initial_order_date nextorderid nextorderdate daysbetween
ISLAT 10315 1996-09-26 10318 1996-10-01 5
ISLAT 10318 1996-10-01 10321 1996-10-03 2
Upvotes: 2
Views: 418
Reputation: 1408
It is a bit tricky because there can be any number of purchase pairs within 5 day windows. It is a good use case for leveraging merge_asof
, which allows to do approximate-but-not-exact matching of a dataframe with itself.
Input data
import pandas as pd
df = pd.DataFrame({'orderid': [10315, 10318, 10321, 10473, 10621, 10253, 10541, 10645],
'customerid': ['ISLAT', 'ISLAT', 'ISLAT', 'ISLAT', 'ISLAT', 'HANAR', 'HANAR', 'HANAR'],
'orderdate': ['1996-09-26', '1996-10-01', '1996-10-03', '1997-03-13', '1997-08-05', '1996-07-10', '1997-05-19', '1997-08-26']})
Define a function that computes the pairs of purchases, given data for a customer.
def compute_purchase_pairs(df):
# Approximate self join on the date, but not exact.
df_combined = pd.merge_asof(df,df, left_index=True, right_index=True,
suffixes=('_first', '_second') , allow_exact_matches=False)
# Compute difference
df_combined['timedelta'] = df_combined['orderdate_first'] - df_combined['orderdate_second']
return df_combined
Do the preprocessing and compute the pairs
# Convert to datetime
df['orderdate'] = pd.to_datetime(df['orderdate'])
# Sort dataframe from last buy to newest (groupby will not change this order)
df2 = df.sort_values(by='orderdate', ascending=False)
# Create an index for joining
df2 = df.set_index('orderdate', drop=False)
# Compute puchases pairs for each customer
df_differences = df2.groupby('customerid').apply(compute_purchase_pairs)
# Show only the ones we care about
result = df_differences[df_differences['timedelta'].dt.days<=5]
result.reset_index(drop=True)
Result
orderid_first customerid_first orderdate_first orderid_second \
0 10318 ISLAT 1996-10-01 10315.0
1 10321 ISLAT 1996-10-03 10318.0
customerid_second orderdate_second timedelta
0 ISLAT 1996-09-26 5 days
1 ISLAT 1996-10-01 2 days
Upvotes: 2
Reputation: 4456
It's quite simple. Let's write down the requirements one at the time and try to build upon.
First, I guess that the customer has a unique id since it's not specified. We'll use that id for identifying customers.
Second, I assume it does not matter if the customer bought 5 days before or after.
My solution, is to use a simple filter. Note that this solution can also be implemented in a SQL database.
As a condition, we require the user to be the same. We can achieve this as follows:
new_df = df[df["ID"] == df["ID"].shift(1)]
We create a new DataFrame, namely new_df, with all rows such that the xth row has the same user id as the xth - 1 row (i.e. the previous row).
Now, let's search for purchases within the 5 days, by adding the condition to the previous piece of code
new_df = df[df["ID"] == df["ID"].shift(1) & (df["Date"] - df["Date"].shift(1)) <= 5]
This should do the work. I cannot test it write now, so some fixes may be needed. I'll try to test it as soon as I can
Upvotes: 1
Reputation: 29635
you can create the column 'daysbetween' with sort_values
and diff
. After to get the following order, you can join
df with df once groupby
per customerid and shift
all the data. Finally, query
where the number of days in 'daysbetween_next ' is met:
df['daysbetween'] = df.sort_values(['customerid', 'orderdate'])['orderdate'].diff().dt.days
df_final = df.join(df.groupby('customerid').shift(-1),
lsuffix='_initial', rsuffix='_next')\
.drop('daysbetween_initial', axis=1)\
.query('daysbetween_next <= 5 and daysbetween_next >=0')
Upvotes: 1
Reputation: 30971
First, to be able to count the difference in days, convert orderdate column to datetime:
df.orderdate = pd.to_datetime(df.orderdate)
Then define the following function:
def fn(grp):
return grp[(grp.orderdate.shift(-1) - grp.orderdate) / np.timedelta64(1, 'D') <= 5]
And finally apply it:
df.sort_values(['customerid', 'orderdate']).groupby('customerid').apply(fn)
Upvotes: 2