Reputation: 202
Dataframe:
df = pd.DataFrame({'a':['NA','W','Q','M'], 'b':[0,0,4,2], 'c':[0,12,0,2], 'd':[22, 3, 34, 12], 'e':[0,0,3,6], 'f':[0,2,0,0], 'h':[0,1,1,0] })
df
a b c d e f h
0 NA 0 0 22 0 0 0
1 W 0 12 3 0 2 1
2 Q 4 0 34 3 0 1
3 M 2 2 12 6 0 0
I want to drop the entire row if the value of column b
and all columns e
contain 0
Basically I want to get something like this
a b c d e f h
1 W 0 12 3 0 2 1
2 Q 4 0 34 3 0 1
3 M 2 2 12 6 0 0
Upvotes: 1
Views: 347
Reputation: 863411
If want test from e
to end columns and b
columns added by DataFrame.assign
use DataFrame.loc
for selecing, test for not equal by DataFrame.ne
and then if aby values match (it means no all 0
) with DataFrame.any
and last filter by boolean indexing
:
df = df[df.loc[:, 'e':].assign(b = df['b']).ne(0).any(axis=1)]
print (df)
a b c d e f h
1 W 0 12 3 0 2 1
2 Q 4 0 34 3 0 1
3 M 2 2 12 6 0 0
Upvotes: 1