Reputation: 347
My dataset is similar to:
data <- tibble( "DATE_FIRE"= c("1989-07-31", "1989-07-31", "1989-07-31", "1989-07-31","1989-07-31","1989-08-31", "1989-08-31", "1989-08-31", "1989-08-31","1989-08-31"),
"FID" = c(1,1,1,1,1,2,2,2,2,2),
"Date" = c(1988, 1989, 1990, 1991, 1992, 1988, 1989, 1990, 1991, 1992),
"NDVI" = c( 0.9, 0.8, 0.1, 0.2, 0.3, 0.8, 0.85, 0.15, 0.30, 0.50))
data$DATE_FIRE <- as.Date(data$DATE_FIRE, format= "%Y-%m-%d")
data$FID <- as.factor(data$FID)
> data
# A tibble: 10 x 4
DATE_FIRE FID Date NDVI
<date> <fct> <dbl> <dbl>
1 1989-07-31 1 1988 0.9
2 1989-07-31 1 1989 0.8
3 1989-07-31 1 1990 0.1
4 1989-07-31 1 1991 0.2
5 1989-07-31 1 1992 0.3
6 1989-08-31 2 1988 0.8
7 1989-08-31 2 1989 0.85
8 1989-08-31 2 1990 0.15
9 1989-08-31 2 1991 0.3
10 1989-08-31 2 1992 0.5
It is about forest fire and its recovery by NDVI values. As forest recover, NDVI value rises.
DATE_FIRE
: Year when the fire took place for each plotFID
: ID of each plotDate
: date of the measurement of NDVINDVI
: NDVI valueWhat I would like to do is to perform 2 linear regressions, one for FID=1
and another one for FID=2
, to compare their recovery rate. I have, though, to apply the recovery rate ONLY to NDVI
values corresponding to dates after the fire (determined by DATE_FIRE
) took place. In case of FID=1, I should only take rows 3, 4 and 5, as rows 1 and 2 correspond to measurements before the fire.
Furthermore, I would like to have my results as table; something like:
> desired_output
# A tibble: 2 x 4
FID beta r2 p
<dbl> <dbl> <dbl> <dbl>
1 1 0.1 1 0
2 2 0.175 0.99 0.01
WHAT I HAVE TRIED SO FAR:
Set DATE_FIRE
as years to be comparable to Date
:
data$DATE_FIRE <- year(data$DATE_FIRE)
Then:
data_d <- data %>%
group_by(FID) %>%
filter(Date > DATE_FIRE) %>%
do(tidy(lm(NDVI ~ Date,data)))
The grouping kind of works but not the filter. Any help will be welcome!
Upvotes: 1
Views: 64
Reputation: 40171
One option involving dplyr
, tidyr
, lubridate
, purrr
and broom
could be:
data %>%
group_by(DATE_FIRE, FID) %>%
filter(Date > year(DATE_FIRE)) %>%
nest() %>%
mutate(model = map(data, ~ tidy(lm(NDVI ~ Date, data = .))),
r2 = map_dbl(data, ~ summary(lm(NDVI ~ Date, data = .))$r.squared)) %>%
unnest(model)
DATE_FIRE FID data term estimate std.error statistic p.value r2
<date> <fct> <list<df[,2]>> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1989-07-31 1 [3 × 2] (Intercept) -199. 5.85e-11 -3.40e12 1.87e-13 1
2 1989-07-31 1 [3 × 2] Date 0.1 2.94e-14 3.41e12 1.87e-13 1
3 1989-08-31 2 [3 × 2] (Intercept) -348. 2.87e+ 1 -1.21e 1 5.24e- 2 0.993
4 1989-08-31 2 [3 × 2] Date 0.175 1.44e- 2 1.21e 1 5.24e- 2 0.993
Upvotes: 1