Reputation: 958
I have a dataframe with some genomic intervals and its corresponding coverage in several samples:
sample1 sample2 sample3
1:1-3 30 NA NA
1:1-4 NA 40 35
1:4-5 35 NA NA
1:5-7 NA 50 50
1:6-7 60 NA NA
I would like to obtain the same dataframe but for genomic positions:
sample1 sample2 sample3
1:1 30 40 35
1:2 30 40 35
1:3 30 40 35
1:4 35 40 35
1:5 35 50 50
1:6 60 50 50
1:7 60 50 50
Do you know how can I get this? (I have also tried to transform the dataframe in a GenomicRanges object, but I still don't know how to do this)
Upvotes: 0
Views: 65
Reputation: 46898
Your data which i read in:
tab = structure(list(sample1 = c(30L, NA, 35L, NA, 60L), sample2 = c(NA,
40L, NA, 50L, NA), sample3 = c(NA, 35L, NA, 50L, NA)), class = "data.frame", row.names = c("1:1-3",
"1:1-4", "1:4-5", "1:5-7", "1:6-7"))
It depends on how large your dataset is, so this is a GenomicRange based solution:
library(GenomicRanges)
gr = GRanges(rownames(tab))
seq_range = range(gr)
W = width(seq_range)
COV = lapply(tab,function(i){
i[is.na(i)] = 0
coverage(gr,weight=i,width=W)
})
cov_samples = sapply(COV,function(i)as.matrix(i[seq_range]))
cov_samples
sample1 sample2 sample3
[1,] 30 40 35
[2,] 30 40 35
[3,] 30 40 35
[4,] 35 40 35
[5,] 35 50 50
[6,] 60 50 50
[7,] 60 50 50
Now we combine it with the coordinates:
final = data.frame(
seqnames=rep(as.character(seqnames(seq_range)),W),
pos = unlist(lapply(W,seq,from=1)),
cov_samples)
seqnames pos sample1 sample2 sample3
1 1 1 30 40 35
2 1 2 30 40 35
3 1 3 30 40 35
4 1 4 35 40 35
5 1 5 35 50 50
6 1 6 60 50 50
7 1 7 60 50 50
Upvotes: 1