Reputation: 194
usually when we generate TFRecords from xml label files (from labelimg for example), there are the values of x.min, x.max, y.min and y.max, which show a square label. we can make a CSV data out of it and generate the TFRecords from it.
but in the case of pts, the values are as a non-square bounding box, e.g:
bounding_box: 534.588998862 232.095176337; 101.596234357 388.45367463; 51.3295676906 249.25367463; 484.322332196 92.8951763367
so there is four x and y points, not just two as the labelimg gives. can someone explain to me how generate TFRecord from pts?
Upvotes: 1
Views: 236
Reputation: 194
So just in case anyone else had the same question, i wrote a script that'll make those four points as a square with xmin xmax ymin ymax, so we can get the tfrecord easily as like from xml labelimg.
here it is:
import os
import glob
import pandas as pd
from PIL import Image
import csv
for pts_file in glob.glob("./labels" + '/*.pts'):
with open(pts_file) as f:
im=Image.open("./img/" + pts_file[9:-3] + "jpg")
filename = pts_file[9:-3] + "jpg"
width = str(im.size[0])
height = str(im.size[1])
classs = "fish"
lines = f.readlines()
content = [line.split(' ')for line in open (pts_file)]
xmax = max(int(float(content[0][1])), int(float(content[0][4])), int(float(content[0][7])), int(float(content[0][10])))
xmin = min(int(float(content[0][1])), int(float(content[0][4])), int(float(content[0][7])), int(float(content[0][10])))
ymax = max(int(float(content[0][3][0:5])), int(float(content[0][6][0:5])), int(float(content[0][9][0:5])), int(float(content[0][11][0:5])))
ymin = min(int(float(content[0][3][0:5])), int(float(content[0][6][0:5])), int(float(content[0][9][0:5])), int(float(content[0][11][0:5])))
fields=[filename,width,height,classs,xmin,ymin,xmax,ymax]
with open(r'name', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow(fields)
print('Successfully converted pts to csv.')
Upvotes: 1