Reputation: 537
I have gone through several posts and they either only apply to examples with one column, or with only NaN or 0 values - but not both.
My df looks like this. I would like to fill-in column 'Main' with the non-missing or non-zero string found in the four columns right to it.
current df =
import pandas as pd
d = {'Main': ['','','',''], 'col2': ['Big','','',0], 'col3': [0,'Medium',0,''], 'col4': ['','','Small',''], 'col5':['',0,'','Vsmall']}
df = pd.DataFrame(data=d)
+------+------+--------+-------+--------+
| Main | Col2 | Col3 | Col4 | Col5 |
+------+------+--------+-------+--------+
| | Big | 0 | ... | |
+------+------+--------+-------+--------+
| | ... | Medium | ... | 0 |
+------+------+--------+-------+--------+
| | | 0 | Small | |
+------+------+--------+-------+--------+
| | 0 | ... | ... | Vsmall |
+------+------+--------+-------+--------+
desired output df
+--------+------+--------+-------+--------+
| Main | Col2 | Col3 | Col4 | Col5 |
+--------+------+--------+-------+--------+
| Big | Big | 0 | ... | |
+--------+------+--------+-------+--------+
| Medium | ... | Medium | ... | 0 |
+--------+------+--------+-------+--------+
| Small | | 0 | Small | |
+--------+------+--------+-------+--------+
| Vsmall | 0 | ... | ... | Vsmall |
+--------+------+--------+-------+--------+
Thanks in advance!
Upvotes: 4
Views: 2551
Reputation: 862571
Idea is replace 0
and empty strings to missing values by DataFrame.mask
, then back filling missing rows and last select first column:
c = ['col2','col3','col4','col5']
df['Main'] = df[c].mask(df.isin(['0','',0])).bfill(axis=1).iloc[:, 0]
print (df)
Main col1 col2 col3
0 Big Big None
1 Medium 0 Medium None
2 Small 0 Small
If possible create list of all possible extracted strings replace all another values by DataFrame.where
:
['col2','col3','col4','col5']
df['Main'] = df[c].where(df.isin(['Big','Medium','Small','Vsmall'])).bfill(axis=1).iloc[:,0]
print (df)
Main col1 col2 col3
0 Big Big None
1 Medium 0 Medium None
2 Small 0 Small
Details:
print (df[c].mask(df.isin(['0','',0])))
#print (df[c].where(df.isin(['Big','Medium','Small','Vsmall'])))
col1 col2 col3
0 Big None NaN
1 NaN Medium None
2 NaN NaN Small
print (df[c].mask(df.isin(['0','',0])).bfill(axis=1))
col1 col2 col3
0 Big NaN NaN
1 Medium Medium None
2 Small Small Small
Upvotes: 4
Reputation: 1395
From sample data presented by you, I think what you are trying to achieve is decoding one-hot encoded data (a classic technique for converting categorical data to numerical data in Machine Learning).
Here is code to achieve decoding:
import pandas as pd
d = {'Main': [0,0,0,0], 'col2': ['Big','','',0], 'col3': [0,'Medium',0,''], 'col4': ['','','Small',''], 'col5':['',0,'','Vsmall']}
df = pd.DataFrame(data=d)
def reduce_function(row):
for col in ['col2','col3','col4','col5']:
if not pd.isnull(row[col]) and row[col] != 0 and row[col] != '':
return row[col]
df['Main']=df.apply(reduce_function, axis=1)
Note :
Always consider, using reductions (i.e. apply()
) on dataframes than iterating over rows.
Upvotes: 0