Reputation: 2801
Depending on the user input, I have different conditions to check for in my array. Assume there are a maximum of 3 conditions:
a must be 1
b must be positive
c must be True
Only where these three conditions evaluate as True, the array shall be processed:
myArr = np.random.rand(5)
a = np.array([1, 1, 1, 0, 1])
b = np.array([4, 3, -8, 7, 6])
c = np.array([True, False, True, True, True])
valid_indices = np.where((a == 1) & (b > 0) & (c == True))
>> valid_indices
>> Out: (array([0, 4], dtype=int64),)
Not knowing beforehand which of these conditions will be provided, I would have to check like this:
if a and not b and not c:
valid_indices = np.where(a == 1)
elif a and not b and c:
valid_indices = np.where((a == 1) & (c == True))
elif a and b and not c:
valid_indices = np.where((a == 1) & (b > 0))
elif not a and b and c:
valid_indices = np.where((b > 0) & (c == True))
elif not a and not b and c:
valid_indices = np.where(c == True)
elif not a and b and not c:
valid_indices = np.where((b > 0))
God forbid I add another condition. Things are getting really messy. I am looking for a way to dynamically add to the condition as if it were just a regular string or formatter. Is that possible?
Upvotes: 1
Views: 835
Reputation: 535
If you set defaults to the true condition:
import numpy as np
myArr = np.random.rand(5)
a = np.array([1, 1, 1, 0, 1])
b = np.array([4, 3, -8, 7, 6])
c = np.array([True, False, True, True, True])
def get_id(**kwargs):
""" a must be 1, b must be positive, c must be True """
a = kwargs.get("a", np.ones(5))
b = kwargs.get("b", np.ones(5))
c = kwargs.get("c", np.ones(5) == 1)
return np.where((a == 1) & (b > 0) & c)
print(get_id(a=a))
print(get_id(a=a, c=c))
print(get_id(a=a, b=b))
print(get_id(a=a, b=b, c=c))
(array([0, 1, 2, 4]),)
(array([0, 2, 4]),)
(array([0, 1, 4]),)
(array([0, 4]),)
Upvotes: 2
Reputation: 6495
Maybe something like the following can help:
myArr = np.random.rand(5)
size = myArr.size
all_true = np.repeat(True, size)
a = np.array([1, 1, 1, 0, 1])
b = np.array([4, 3, -8, 7, 6])
c = np.array([True, False, True, True, True])
valid_indices = np.where((a == 1 if 'a' in locals() else all_true) &
(b > 0 if 'b' in locals() else all_true) &
(c == True if 'c' in locals() else all_true))
In this way you can write all conditions and only check if the variable exists in the local varibales by 'a' in locals()
. If you are defining a
, b
and c
somewhere and refering them in a function you can check if they are defined in the global environment using 'a' in globals()
.
Upvotes: 1