user13117513
user13117513

Reputation:

Calculating mean and standard deviation using Spark / SCALA

I have a dataframe :

+------------------+
|         speed    |
+------------------+
|               0.0|
|               0.0|
|               0.0|
|               0.0|
|               0.0|
|               0.0|
| 3.851015222867941|
| 4.456657435740331|
|               0.0|
|               NaN|
|               0.0|
|               0.0|
|               NaN|
|               0.0|
|               0.0|
| 5.424094717765175|
|1.5781185921913181|
|2.6695439462433033|
| 17.43513658955467|
| 5.440912941359523|
|11.507138536880484|
|12.895677610360089|
| 9.930875909722456|
+------------------+

I want to calculate the mean and the standard deviation of speed column . When I execute this code

dataframe_final.select("speed").orderBy("id").agg(avg("speed")).show(1000)

I get

+------------+
|avg(speed)|
+------------+
|         NaN|
+------------+

Where does the problem comes from ? any posibility to solve it ?

Thanks

Upvotes: 0

Views: 1047

Answers (2)

selvaram s
selvaram s

Reputation: 92

we can also createOrReplaceTempView(dataframe_final) and then we can use spark sql to query and take avg of the speed column

val tableview= dataframe_final.createOrReplaceTempView()
val query = select avg(speed) from tableview where speed IS NOT NULL order by Id
spark.sql(query).show()

Upvotes: 1

nathan_gs
nathan_gs

Reputation: 163

You have NaN (Not a Number) values in your dataset. You cannot calculate an average with those.

Either you filter them:


dataframe_final
  .filter($"speed".isNotNull())
  .select("speed")
  .orderBy("id")
  .agg(avg("speed"))
  .show(1000)

Or replace them with a 0 using the fill function:

dataframe_final
  .select("speed")
  .na.fill(0)
  .agg(avg("speed"))
  .show(1000)

Additionally you are trying to aggregate the Vitesse column and not the speed.

Upvotes: 5

Related Questions