Reputation: 395
require(dplyr)
df <- data.frame(Date.time = c("2015-01-01 00:00:00", "2015-01-01 00:30:00", "2015-01-01 01:00:00", "2015-01-01 01:30:00", "2015-01-01 02:00:00"),
RH33HMP = c(99.6,99.6,99.5,99.3,98.63),
RH33HMP_f = c(9,9,92,93,9),
RH38HMP = c(99.6,99.6,99.5,99.3,98.63),
RH38HMP_f = c(9,902,9,9,91))
Here is some example data.frame.
I'd like to set every value to NA
where the corresponding quality column (_f)
contains something else than 9
. First, I grep the column number with the actual measurements:
col_var <- grep("^Date.|_f$", names(df), invert = T)
Then I use dplyr
and mutate_at
with an if_else
function. My problem is, that mutate_at
iterates through all the columns of col_val
, but the function itself does not. I tried several examples that I found on stackoverflow, but none of them seem to work.
# does not work
df_qc <- df %>%
mutate_at(.vars = col_var,
.funs = list(~ ifelse(df[, col_var+1] == 9, ., NA)))
i=1
df_qc <- df %>%
mutate_at(.vars = col_var,
.funs = list(~ ifelse(df[, i+1] == 9, ., NA)))
I think I am quite close, any help appreciated.
Upvotes: 4
Views: 123
Reputation: 40171
One dplyr
and purrr
option could be:
map2_dfr(.x = df %>%
select(ends_with("HMP")),
.y = df %>%
select(ends_with("_f")),
~ replace(.x, .y != 9, NA)) %>%
bind_cols(df %>%
select(-ends_with("HMP")))
RH33HMP RH38HMP Date.time RH33HMP_f RH38HMP_f
<dbl> <dbl> <fct> <dbl> <dbl>
1 99.6 99.6 2015-01-01 00:00:00 9 9
2 99.6 NA 2015-01-01 00:30:00 9 902
3 NA 99.5 2015-01-01 01:00:00 92 9
4 NA 99.3 2015-01-01 01:30:00 93 9
5 98.6 NA 2015-01-01 02:00:00 9 91
Upvotes: 1
Reputation: 389235
We can use Map
:
df[col_var] <- Map(function(x, y) {y[x != 9] <- NA;y},df[col_var + 1],df[col_var])
df
# Date.time RH33HMP RH33HMP_f RH38HMP RH38HMP_f
#1 2015-01-01 00:00:00 99.60 9 99.6 9
#2 2015-01-01 00:30:00 99.60 9 NA 902
#3 2015-01-01 01:00:00 NA 92 99.5 9
#4 2015-01-01 01:30:00 NA 93 99.3 9
#5 2015-01-01 02:00:00 98.63 9 NA 91
Similarly, you can use map2
in purrr
if you prefer tidyverse
.
df[col_var] <- purrr::map2(df[col_var + 1],df[col_var], ~{.y[.x != 9] <- NA;.y})
Upvotes: 1