Reputation: 1781
I ran this benchmark and I was very surprised to see that Crystal performances are almost the same for Int32 or Float64 operations.
$ crystal benchmarks/int_vs_float.cr --release
int32 414.96M ( 2.41ns) (±14.81%) 0.0B/op fastest
float64 354.27M ( 2.82ns) (±12.46%) 0.0B/op 1.17× slower
Do I have some weird side effects on my benchmark code?
require "benchmark"
res = 0
res2 = 0.0
Benchmark.ips do |x|
x.report("int32") do
a = 128973 / 119236
b = 119236 - 128973
d = 117232 > 123462 ? 117232 * 123462 : 123462 / 117232
res = a + b + d
end
x.report("float64") do
a = 1.28973 / 1.19236
b = 1.19236 - 1.28973
d = 1.17232 > 1.23462 ? 1.17232 * 1.23462 : 1.23462 / 1.17232
res = a + b + d
end
end
puts res
puts res2
Upvotes: 2
Views: 142
Reputation: 4857
First of all /
in Crystal is float division, so this is largely comparing floats:
typeof(a) # => Float64
typeof(b) # => Int32
typeof(d) # => Float64 | Int32)
If we fix the benchmark to use integer division, //
, I get:
int32 631.35M ( 1.58ns) (± 5.53%) 0.0B/op 1.23× slower
float64 773.57M ( 1.29ns) (± 3.21%) 0.0B/op fastest
Still no real difference, within error margin. Why's that? Let's dig deeper. First we can extract the examples into a not inlinable function and make sure to call it so Crystal doesn't just ignore it:
@[NoInline]
def calc
a = 128973 // 119236
b = 119236 - 128973
d = 117232 > 123462 ? 117232 * 123462 : 123462 // 117232
a + b + d
end
p calc
Then we can build this with crystal build --release --no-debug --emit llvm-ir
to obtain an .ll
file witht the optimized LLVM-IR. We dig out our calc
function and see something like this:
define i32 @"*calc:Int32"() local_unnamed_addr #19 {
alloca:
%0 = tail call i1 @llvm.expect.i1(i1 false, i1 false)
br i1 %0, label %overflow, label %normal6
overflow: ; preds = %alloca
tail call void @__crystal_raise_overflow()
unreachable
normal6: ; preds = %alloca
ret i32 -9735
}
Where's all our calculations gone? LLVM did them at compile time because it was all constants! We can repeat the experiment with the Float64
example:
define double @"*calc:Float64"() local_unnamed_addr #11 {
alloca:
ret double 0x40004CAA3B35919C
}
A little less boilerplate, hence it being slightly faster, but again, all precomputed!
I'll end the exercise here. Further research for the reader:
Upvotes: 6