Reputation: 1293
I have a list as shown below:
[{'id': 'id_123',
'type': 'type_1',
'created_at': '2020-02-12T17:45:00Z'},
{'id': 'id_124',
'type': 'type_2',
'created_at': '2020-02-12T18:15:00Z'},
{'id': 'id_125',
'type': 'type_1',
'created_at': '2020-02-13T19:43:00Z'},
{'id': 'id_126',
'type': 'type_3',
'created_at': '2020-02-13T07:00:00Z'}]
I am trying to find how many times type : type_1
occurs and what is the earliest created_at
timestamp in that list for type_1
Upvotes: 0
Views: 67
Reputation: 304
You can use the following function to get the desired output:
from datetime import datetime
def sol(l):
sum_=0
dict_={}
for x in l:
if x['type']=='type_1':
sum_+=1
dict_[x['id']]=datetime.strptime(x['created_at'], "%Y-%m-%dT%H:%M:%SZ")
date =sorted(dict_.values())[0]
for key,value in dict_.items():
if value== date: id_=key
return sum_,date,id_
sol(l)
This function gives the number of times type ='type_1', corresponding minimum date and its id respectively.
Hope this helps!
Upvotes: 0
Reputation: 6474
You could use list comprehension to get all the sublists you're interested in, then sort by 'created_at'.
l = [{'id': 'id_123',
'type': 'type_1',
'created_at': '2020-02-12T17:45:00Z'},
{'id': 'id_124',
'type': 'type_2',
'created_at': '2020-02-12T18:15:00Z'},
{'id': 'id_125',
'type': 'type_1',
'created_at': '2020-02-13T19:43:00Z'},
{'id': 'id_126',
'type': 'type_3',
'created_at': '2020-02-13T07:00:00Z'}]
ll = [x for x in l if x['type'] == 'type_1']
ll.sort(key=lambda k: k['created_at'])
print(len(ll))
print(ll[0]['created_at'])
Output:
2
02/12/2020 17:45:00
Upvotes: 1
Reputation: 1404
You can just generate a list of all the type_1s using a list_comprehension
, and them use sort
with datetime.strptime
to sort the values accordingly
from datetime import datetime
# Generate a list with only the type_1s' created_at values
type1s = [val['created_at'] for val in vals if val['type']=="type_1"]
# Sort them based on the timestamps
type1s.sort(key=lambda date: datetime.strptime(date, "%Y-%m-%dT%H:%M:%SZ"))
# Print the lowest value
print(type1s[0])
#'2020-02-12T17:45:00Z'
Upvotes: 0
Reputation: 82755
This is one approach using filter
and min
.
Ex:
data = [{'id': 'id_123',
'type': 'type_1',
'created_at': '2020-02-12T17:45:00Z'},
{'id': 'id_124',
'type': 'type_2',
'created_at': '2020-02-12T18:15:00Z'},
{'id': 'id_125',
'type': 'type_1',
'created_at': '2020-02-13T19:43:00Z'},
{'id': 'id_126',
'type': 'type_3',
'created_at': '2020-02-13T07:00:00Z'}]
onlytype_1 = list(filter(lambda x: x['type'] == 'type_1', data))
print(len(onlytype_1))
print(min(onlytype_1, key=lambda x: x['created_at']))
Or:
temp = {}
for i in data:
temp.setdefault(i['type'], []).append(i)
print(len(temp['type_1']))
print(min(temp['type_1'], key=lambda x: x['created_at']))
Output:
2
{'id': 'id_123', 'type': 'type_1', 'created_at': '2020-02-12T17:45:00Z'}
Upvotes: 0
Reputation: 14216
We can achieve this in several steps.
To find the number of times type_1
occurs we can use the built-in filter
in tandem with itemgetter
.
from operator import itemgetter
def my_filter(item):
return item['type'] == 'type_1'
key = itemgetter('created_at')
items = sorted(filter(my_filter, data), key=key)
print(f"Num records is {len(items)}")
print(f"Earliest record is {key(items[0])}")
Num records is 2
Earliest record is 2020-02-12T17:45:00Z
Conversely you can use a generator-comprehension and then sort the generator.
gen = (item for item in data if item['type'] == 'type_1')
items = sorted(gen, key=key)
# rest of the steps are the same...
Upvotes: 1