Reputation: 814
I have a function stacked_plot()
that uses tidy evaluation to make a stacked plot. I wanted to include it in my package and make the other function from that package to call it. Here's the minimal example:
stacked_plot <- function(data, what, by = NULL, date_col = date){
by <- rlang::enquo(by)
what <- rlang::ensym(what)
date_col <- rlang::ensym(date_col)
data <- data %>%
dplyr::group_by(!!date_col, !!by) %>%
dplyr::summarise(!!what := sum(!!what, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
tidyr::complete(!!date_col, !!by, fill = rlang::list2(!!what := 0))
p <- data %>%
ggplot2::ggplot(ggplot2::aes(!!date_col, !!what, fill = !!by)) +
ggplot2::geom_area(position = 'stack')
print(p)
}
#' @importFrom rlang .data
call_plot <- function() {
to_plot <- data.frame(date = rep(seq(lubridate::ymd('2020-01-01'),
lubridate::ymd('2020-03-30'),
by = '1 day'), each = 3)) %>%
dplyr::mutate(cat = rep(c('A', 'B', 'C'), 90), v1 = runif(270))
p <- to_plot %>%
stacked_plot(what = .data$v1, by = .data$cat)
return(p)
}
Incorporating stacked_plot()
into a package worked fine and I can call it interactively. However, the call_plot()
after load_all()
results in an error. Here's the rlang::last_error()
output:
rlang::last_error()
<error/rlang_error>
Only strings can be converted to symbols
Backtrace:
1. global::call_plot()
10. mmmtools::stacked_plot(., what = .data$v1, by = .data$cat)
11. rlang::ensym(what) R/stacked_plot.R:4:2
Run `rlang::last_trace()` to see the full context.
I believe this is due to some idiosyncracy of tidy evaluation. However I can't really find any source about pecularities of using tidyeval
in R packages. The only thing I know is that I can't really use quoted variables directly and use .data$variable
pattern instead, which I did in call_plot()
.
How can I use adjust stacked_plot()
to make it usable from other package functions?
Upvotes: 4
Views: 413
Reputation: 887781
It seems that the OP wanted to take unquoted column names. If that is the case, change the ensym
to enquo
stacked_plot <- function(data, what, by = NULL, date_col = date){
by <- rlang::enquo(by)
what <- rlang::enquo(what)
date_col <- rlang::enquo(date_col)
data %>%
dplyr::group_by(!! date_col, !!by) %>%
dplyr::summarise(!!what := sum(!!what, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
tidyr::complete(!!date_col, !!by, fill = rlang::list2(!!what := 0)) %>%
ggplot2::ggplot(ggplot2::aes(!!date_col, !!what, fill = !!by)) +
ggplot2::geom_area(position = 'stack')
}
call_plot <- function() {
to_plot <- data.frame(date = rep(seq(lubridate::ymd('2020-01-01'),
lubridate::ymd('2020-03-30'),
by = '1 day'), each = 3)) %>%
dplyr::mutate(cat = rep(c('A', 'B', 'C'), 90), v1 = runif(270))
p <- to_plot %>%
stacked_plot(what = v1, by = cat)
return(p)
}
-call the function
call_plot()
In addition, the enquo
+ !!
can be totally replaced with {{}}
stacked_plot <- function(data, what, by = NULL, date_col = date){
data %>%
dplyr::group_by({{date_col}}, {{by}}) %>%
dplyr::summarise( {{what}} := sum({{what}}, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
tidyr::complete({{date_col}}, {{by}}, fill = rlang::list2({{what}} := 0)) %>%
ggplot2::ggplot(ggplot2::aes({{date_col}}, {{what}}, fill = {{by}})) +
ggplot2::geom_area(position = 'stack')
}
and it can be as in the previous one
call_plot()
Upvotes: 5