Reputation: 2605
Consider a Pandas DataFrame
with MultiIndex
:
virtual_device_135 virtual_device_136
tag_5764 tag_5764
timestamp
31/03/2020 02:10:30 -0.97 NaN
31/03/2020 02:10:35 NaN 0.98
31/03/2020 02:10:40 -0.97 NaN
31/03/2020 02:10:45 NaN -0.98
31/03/2020 02:10:50 -0.97 NaN
The above DataFrame
needs be converted into a json
which looks like this:
bodyContent": [
{
"time": "31/03/2020 02:17:01",
"tag_5764_virtual_device_135": -0.97
},
{
"time": "31/03/2020 02:17:12",
"tag_5764_virtual_device_135": -0.97
},
{
"time": "31/03/2020 02:17:22",
"tag_5764_virtual_device_135": -0.97
},
{
"time": "31/03/2020 02:18:37",
"tag_5764_virtual_device_136": -0.98
},
{
"time": "31/03/2020 02:18:47",
"tag_5764_virtual_device_136": -0.98
},
{
"time": "31/03/2020 02:18:57",
"tag_5764_virtual_device_136": -0.98
}
]
Currently, I am splitting the DF, then rename the column, then merge it and then convert to json.
Is there a better way in Pandas I can use?
Any help is appreciated!
Upvotes: 0
Views: 449
Reputation: 582
df.columns = ['_'.join(col[::-1]) for col in df.columns]
df = df.reset_index().rename(columns = {'timestamp': 'time'})
jsonbody = list({k: {k1:v1 for k1,v1 in v.items() if pd.notnull(v1)} \
for k, v in df.to_dict(orient= 'index').items()}.values())
Upvotes: 0
Reputation: 2605
I found it can be done as following:
If the DataFrame
is df:
df.columns = ['_'.join(col) for col in df.columns]
df.reset_index(inplace=True)
df_list = json.loads(df.to_json(orient='records'))
for each in df_list:
body_content_list.append(each)
Hope this would be useful for someone.
Upvotes: 1