Reputation: 674
I'm using the following code to crop an image and retrieve a non-rectangular patch.
def crop_image(img,roi):
height = img.shape[0]
width = img.shape[1]
mask = np.zeros((height, width), dtype=np.uint8)
points = np.array([roi])
cv2.fillPoly(mask, points, (255))
res = cv2.bitwise_and(img, img, mask=mask)
rect = cv2.boundingRect(points) # returns (x,y,w,h) of the rect
cropped = res[rect[1]: rect[1] + rect[3], rect[0]: rect[0] + rect[2]]
return cropped, res
The roi is [(1053, 969), (1149, 1071), (883, 1075), (813, 983)]
.
The above code works however How do I optimize the speed of the code? It is too slow. Is there any other better way of cropping non-rectangular patches?
Upvotes: 1
Views: 520
Reputation: 53081
Here is one way using Python/OpenCV and Numpy.
Input:
import cv2
import numpy as np
# read image
img = cv2.imread("efile.jpg")
points = np.array( [[ [693,67], [23,85], [62,924], [698,918] ]] )
# get bounding rectangle of points
x,y,w,h = cv2.boundingRect(points)
print(x,y,w,h)
# draw white filled polygon from points on black background as mask
mask = np.zeros_like(img)
cv2.fillPoly(mask, points, (255,255,255))
# fill background of image with black according to mask
masked = img.copy()
masked[mask==0] = 0
# crop to bounding rectangle
cropped = masked[y:y+h, x:x+w]
# write results
cv2.imwrite("efile_mask.jpg", mask)
cv2.imwrite("efile_masked.jpg", masked)
cv2.imwrite("efile_cropped.jpg", cropped)
# display it
cv2.imshow("efile_mask", mask)
cv2.imshow("efile_masked", masked)
cv2.imshow("efile_cropped", cropped)
cv2.waitKey(0)
Mask from provided points:
Image with background made black:
Cropped result:
Upvotes: 1
Reputation: 1526
I see two parts that could be optimized.
Edit: Modify code to support any number of channels in the input image
The code below does these two things:
def crop_image(img, roi):
height = img.shape[0]
width = img.shape[1]
channels = img.shape[2] if len(img.shape) > 2 else 1
points = np.array([roi])
rect = cv2.boundingRect(points)
mask_shape = (rect[3], rect[2]) if channels == 1 else (rect[3], rect[2], img.shape[2])
#Notice how the mask image size is now the size of the bounding rect
mask = np.zeros(mask_shape, dtype=np.uint8)
#tranlsate the points so that their origin is the bounding rect top left point
for p in points[0]:
p[0] -= rect[0]
p[1] -= rect[1]
mask_filling = tuple(255 for _ in range(channels))
cv2.fillPoly(mask, points, mask_filling)
cropped = img[rect[1]: rect[1] + rect[3], rect[0]: rect[0] + rect[2]]
res = cv2.bitwise_and(cropped, mask)
return cropped, res
Upvotes: 1