Reputation: 135
I have this code for building a semantic search engine using pre-trained universal encoder from tensorflow hub. I am not able to convert to tlite. I have saved the model to my directory.
Importing the model:
module_path ="/content/drive/My Drive/4"
%time model = hub.load(module_path)
#print ("module %s loaded" % module_url)
#Create function for using modeltraining
def embed(input):
return model(input)
Training the model on data:
## training the model
Model_USE= embed(data)
Saving the model:
exported = tf.train.Checkpoint(v=tf.Variable(Model_USE))
exported.f = tf.function(
lambda x: exported.v * x,
input_signature=[tf.TensorSpec(shape=None, dtype=tf.float32)])
export_dir = "/content/drive/My Drive/"
tf.saved_model.save(exported,export_dir)
Saving works fine but when I convert to tflite it gives error.
Conversion code:
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
Error:
as_list() is not defined on an unknown TensorShape.
Upvotes: 0
Views: 1435
Reputation: 825
First, you should need to add a data generator to have representative inputs for the converter. Just like this:
def representative_data_gen():
for input_value in dataset.take(100):
yield [input_value]
The input value
must be of shape (1, your_iput_shape)
as if it had batch shape of 1. It has to be yielded as a list; mandatory.
You should also declare which type of optimization do you want, for example:
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
Nevertheless, I have also encountered problems with the different options of the converter depending on the network structure, which in this case I do not know. So, to make a clean run of the converter I would just do:
converter = lite.TFLiteConverter.from_keras_model(model)
converter.experimental_new_converter = True
converter.optimizations = [lite.Optimize.DEFAULT]
tfmodel = converter.convert()
The converter.experimental_new_converter = True
is for problems when converting RNNs as in https://github.com/tensorflow/tensorflow/issues/34813
EDIT:
As explained here: ValueError: None is only supported in the 1st dimension. Tensor 'flatbuffer_data' has invalid shape '[None, None, 1, 512]' TFLite only allows the first dimension of your data to be None, that is, the batch. All other dimensions must be fixed. Try padding them with, for example, tf.keras.preprocessing.sequence.pad_sequences
.
Then mask your sequences in the network as described in: tensorflow.org/guide/keras/masking_and_padding
with Embedding
or Masking
layers.
Upvotes: 1