Hoodythree
Hoodythree

Reputation: 317

Why the backpropagation process can still work when I included 'loss.backward()' in 'with torch.no_grad():'?

I'm working with a linear regression example in PyTorch. I know I did wrong including 'loss.backward()' in 'with torch.no_grad():', but why it worked well with my code?

According to pytorch docs, torch.autograd.no_grad is a context-manager that disabled gradient calculation. So I'm really confused.

Code here:

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Toy dataset
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], 
                    [9.779], [6.182], [7.59], [2.167], [7.042], 
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], 
                    [3.366], [2.596], [2.53], [1.221], [2.827], 
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

input_size = 1
output_size = 1
epochs = 100
learning_rate = 0.05

model = nn.Linear(input_size, output_size)


criterion = nn.MSELoss(reduction='sum')
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# training
for epoch in range(epochs):
    # convert numpy to tensor
    inputs = torch.from_numpy(x_train)
    targets = torch.from_numpy(y_train)

    # forward
    out = model(inputs)
    loss = criterion(out, targets)

    # backward
    with torch.no_grad():
        model.zero_grad()
        loss.backward()
        optimizer.step()
        print('inputs grad : ', inputs.requires_grad)
    if epoch % 5 == 0:
        print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))

predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()

# Save the model checkpoint
torch.save(model.state_dict(), 'model\linear_model.ckpt')

Thanks in advance for answering my question.

Upvotes: 1

Views: 1979

Answers (1)

Xxxo
Xxxo

Reputation: 1931

This worked because the loss calculation has happened before the no_grad and you keep calculating the gradients according to that loss calculation (which calculation had gradient enabled).

Basically, you continue update the weights of your layers using the gradients calculated outside of the no_grad.

When you actually use the no_grad:

for epoch in range(epochs):
    # convert numpy to tensor
    inputs = torch.from_numpy(x_train)
    targets = torch.from_numpy(y_train)
    with torch.no_grad():  # no_grad used here
    # forward
        out = model(inputs)
        loss = criterion(out, targets)
        model.zero_grad()
        loss.backward()
        optimizer.step()
        print('inputs grad : ', inputs.requires_grad)
    if epoch % 5 == 0:
        print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))

Then you will get the proper error, saying:

element 0 of tensors does not require grad and does not have a grad_fn.

That is, you use no_grad where is not appropriate to use it.

If you print the .requires_grad of loss, then you will see that loss has requires_grad.

That is, when you do this:

for epoch in range(epochs):
    # convert numpy to tensor
    inputs = torch.from_numpy(x_train)
    targets = torch.from_numpy(y_train)

    # forward
    out = model(inputs)
    loss = criterion(out, targets)

    # backward
    with torch.no_grad():
        model.zero_grad()
        loss.backward()

        optimizer.step()
        print('inputs grad : ', inputs.requires_grad)
        print('loss grad : ', loss.requires_grad)  # Prints loss.require_rgad
    if epoch % 5 == 0:
        print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))

You will see:

inputs grad :  False
loss grad :  True

Additionally, the

print('inputs grad : ', inputs.requires_grad)

Will always print False. That is, if you do

for epoch in range(epochs):
    # convert numpy to tensor
    inputs = torch.from_numpy(x_train)
    targets = torch.from_numpy(y_train)

    print('inputs grad : ', inputs.requires_grad). # Print the inputs.requires_grad

    # forward
    out = model(inputs)
    loss = criterion(out, targets)

    # backward
    with torch.no_grad():
        model.zero_grad()
        loss.backward()

        optimizer.step()
        print('inputs grad : ', inputs.requires_grad)
        print('loss grad : ', loss.requires_grad)
    if epoch % 5 == 0:
        print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))

You will get:

inputs grad :  False
inputs grad :  False
loss grad :  True

That is, you are using wrong things to check what you did wrong. The best thing that you can do is to read again the docs of PyTorch on gradient mechanics.

Upvotes: 8

Related Questions