Reputation: 89
I have the following list and DataFrame:
mylist = ['foo', 'bar', 'baz']
df = pd.DataFrame({'Col1': ['fooThese', 'barWords', 'baz are', 'FOO: not', 'bAr:- needed'],
'Col2': ['Baz:Neither', 'Foo Are', 'barThese', np.nan, 'but this is fine']})
I want to replace the strings from mylist if found inside the DataFrame. I am able to replace some using the following Regex Pattern:
pat = '|'.join([r'\b{}'.format(w) for w in mylist])
df2 = df.replace(pat, '', regex=True)
However this doesn't place all the instances. My desired output is the following:
Col1 Col2
0 These Neither
1 Words Are
2 are These
3 not NaN
4 needed but this is fine
Upvotes: 2
Views: 1456
Reputation: 7901
str.replace()
methodimport pandas as pd
mylist = ['foo', 'bar', 'baz']
df = pd.DataFrame({'Col1': ['fooThese', 'barWords', 'baz are', 'FOO: not', 'bAr:- needed'],
'Col2': ['Baz:Neither', 'Foo Are', 'barThese', np.nan, 'but this is fine']})
def replace_str_in_df_with_list(df, list, subst_string):
""" Function which replaces strings in a DataFrame based on a list of strings.
Parameters:
----------
df : <pd.DataFrame> instance
The input DataFrame on which to perform the substitution.
list : list
The list of strings to use for the substitution.
subst_string : str
The substitution string.
Returns:
-------
new_df : <pd.DataFrame> instance
A new DataFrame with strings replaced.
"""
df_new = df.copy()
subst_string = str(subst_string)
# iterate over each columns as a pd.Series() to use that method
for c in df_new:
# iterate over the element of the list
for elem in list:
df_new[c] = df_new[c].str.replace(elem, subst_string, case=False)
return(df_new)
df2 = replace_str_in_df_with_list(df, mylist, '')
Unfortunately this method is not available on DataFrame
(yet?).
The solution provided here is not perfect, but it doesn't modify the input list prior to applying the function.
https://pandas.pydata.org/pandas-docs/stable/search.html?q=replace
Upvotes: 1
Reputation: 42916
You have to use the ?i
regex flag which makes your replacements not case sensitive, also remove special characters:
mydict = {f'(?i){word}': '' for word in mylist}
df2 = df.replace(mydict, regex=True).replace('[:-]', '', regex=True)
Col1 Col2
0 These Neither
1 Words Are
2 are These
3 not NaN
4 needed but this is fine
Or you can add the special characters to your dictionary, so you don't have to call DataFrame.replace
twice:
mydict = {f'(?i){word}': '' for word in mylist}#.update({'[:-]': ''})
mydict['[:-]'] = ''
df2 = df.replace(mydict, regex=True)
Col1 Col2
0 These Neither
1 Words Are
2 are These
3 not NaN
4 needed but this is fine
Upvotes: 5