Reputation: 645
With the following source data -
In [53]: source_data = np.array([
...: [0, 0, 0, 10],
...: [0, 0, 1, 11],
...: [0, 1, 0, 12],
...: [0, 1, 1, 13],
...: [1, 0, 0, 14],
...: [1, 0, 1, 15],
...: [1, 1, 0, 16],
...: [1, 1, 1, 17]
...: ])
I can reshape as follows to make indexing more convenient -
In [62]: max = np.max(source_data, axis=0).astype(int)
In [63]: max
Out[63]: array([ 1, 1, 1, 17])
In [64]: three_d = np.ravel(source_data[:,3]).reshape((max[0]+1, max[1]+1, max[2]+1))
In [65]: three_d
Out[65]:
array([[[10, 11],
[12, 13]],
[[14, 15],
[16, 17]]])
but in case there are rows missing from the source data, for example -
In [68]: source_data2 = np.array([
...: [0, 0, 0, 10],
...: [0, 0, 1, 11],
...: [0, 1, 1, 13],
...: [1, 1, 0, 16],
...: [1, 1, 1, 17]
...: ])
what is the most efficient way to transform it to the following?
array([[[10, 11],
[nan, 13]],
[[nan, nan],
[16, 17]]])
Upvotes: 0
Views: 672
Reputation: 231510
In [512]: source_data = np.array([
...: ...: [0, 0, 0, 10],
...: ...: [0, 0, 1, 11],
...: ...: [0, 1, 0, 12],
...: ...: [0, 1, 1, 13],
...: ...: [1, 0, 0, 14],
...: ...: [1, 0, 1, 15],
...: ...: [1, 1, 0, 16],
...: ...: [1, 1, 1, 17]
...: ...: ])
The reshape
works because the source_data
is complete and in order; you are ignoring the coordinates in the first 3 columns.
But we can use them with:
In [513]: arr = np.zeros((2,2,2), int)
In [514]: arr[source_data[:,0], source_data[:,1], source_data[:,2]] = source_data[:,3]
In [515]: arr
Out[515]:
array([[[10, 11],
[12, 13]],
[[14, 15],
[16, 17]]])
We can do the same with the next source:
In [516]: source_data2 = np.array([
...: ...: [0, 0, 0, 10],
...: ...: [0, 0, 1, 11],
...: ...: [0, 1, 1, 13],
...: ...: [1, 1, 0, 16],
...: ...: [1, 1, 1, 17]
...: ...: ])
fill the target with the nan
:
In [517]: arr = np.full((2,2,2), np.nan)
In [518]: arr
Out[518]:
array([[[nan, nan],
[nan, nan]],
[[nan, nan],
[nan, nan]]])
In [519]: arr[source_data2[:,0], source_data2[:,1], source_data2[:,2]] = source_data2[:,3]
In [520]: arr
Out[520]:
array([[[10., 11.],
[nan, 13.]],
[[nan, nan],
[16., 17.]]])
Upvotes: 1