Reputation: 1259
Here is my problem :
I’m trying to do a operation on a numpy array after reshaping it.
But after this operation, I want to reshape again my array to get my original shape with the same indexing.
So I want to find the appropriate "inverse reshape" so that inverse_reshape(reshape(a))==a
length = 10
a = np.arange(length^2).reshape((length,length))
#a.spape = (10,10)
b = (a.reshape((length//2, 2, -1, 2))
.swapaxes(1, 2)
.reshape(-1, 2, 2))
#b.shape = (25,2,2)
b = my_function(b)
#b.shape = (25,2,2) still the same shape
# b --> a ?
I know that the numpy reshape funtion doesn’t copy the array, but the swapaxes one does.
How can I get the appropriate reshaping ?
Upvotes: 0
Views: 863
Reputation: 231425
Simply reverse the order of the the a=>b
conversion.
The original made:
In [53]: a.reshape((length//2, 2, -1, 2)).shape
Out[53]: (5, 2, 5, 2)
In [54]: a.reshape((length//2, 2, -1, 2)).swapaxes(1,2).shape
Out[54]: (5, 5, 2, 2)
In [55]: b.shape
Out[55]: (25, 2, 2)
So we need to get b
back to the 4d shape, swap the axes back, and reshape to original a
shape:
In [56]: b.reshape(5,5,2,2).swapaxes(1,2).reshape(10,10)
Out[56]:
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])
Upvotes: 2