Reputation: 165
I have a DF with the following structure:
| Level | Rate |
Indicator | AAA | BBB | CCC | XXX | YYY |
location variable |
One 2017 0.69 0.22 0.71 0.02 0.98
2018 0.31 0.15 0.78 0.03 0.96
2019 0.55 0.19 0.82 0.04 0.83
Two 2017 0.31 0.33 0.93 0.11 0.21
2018 0.24 0.35 0.01 0.12 0.14
2019 0.16 0.25 0.12 0.14 0.17
Three 2017 0.58 0.11 0.55 0.21 0.27
2018 0.75 0.10 0.68 0.22 0.25
2019 0.42 0.08 0.71 0.23 0.41
I need to get a DF the following structure (with only one level):
location | variable | Indicator | Level | Rate |
------------------------------------------------
One | 2017 | AAA | 0.69 | NaN |
...
Three | 2019 | YYY | NaN | 0.41 |
I've made several attempts like this below but they don't work:
df.melt(col_level=0, id_vars = ['Location','Indicator','variable'] , value_vars = ['Level', 'Rate'])
Any help would be highly appreciated
Upvotes: 1
Views: 147
Reputation: 862591
Use DataFrame.stack
with DataFrame.rename_axis
and DataFrame.reset_index
:
df = df.stack().rename_axis(('location','variable','indicator')).reset_index()
print (df.head(10))
location variable indicator Level Rate
0 One 2017 AAA 0.69 NaN
1 One 2017 BBB 0.22 NaN
2 One 2017 CCC 0.71 NaN
3 One 2017 XXX NaN 0.02
4 One 2017 YYY NaN 0.98
5 One 2018 AAA 0.31 NaN
6 One 2018 BBB 0.15 NaN
7 One 2018 CCC 0.78 NaN
8 One 2018 XXX NaN 0.03
9 One 2018 YYY NaN 0.96
Upvotes: 1