Reputation: 1844
I am trying to filter the CIFAR10 training and test data with specific labels as given below,
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
import numpy as np
dataset = datasets.cifar10.load_data()
train_data = tf.data.Dataset.from_tensor_slices((dataset[0][0],dataset[0][1]))
test_data = tf.data.Dataset.from_tensor_slices((dataset[1][0],dataset[1][1]))
def filter_f(datas,filter_labels = tf.constant([0,1,2])):
x = tf.not_equal(datas[1],filter_labels)
x = tf.reduce_sum(tf.cast(x, tf.uint8))
return tf.greater(x, tf.constant(0,tf.uint8))
dataset = train_data.filter(filter_f).batch(200)
as per similar issue. However, the filter function returns the unfiltered in the above code.
labels = []
for i, x in enumerate(tfds.as_numpy(dataset)):
labels.append(x[1][0][0])
print(labels)
Returns
[4, 7, 5, 6, 0, 5, 5, 6, 5, 3, 6, 7, 0, 0, 6, 3]
To reproduce the result, please use this colab link
Upvotes: 0
Views: 3331
Reputation: 11333
I'm not sure the exact issue underneath. Nevertheless, if you just need to remove data belonging to a specific class, you can use the following.
dataset = train_data.filter(lambda x,y: tf.reduce_all(tf.not_equal(y, [0,1,2]))).batch(200)
Upvotes: 4