Reputation: 705
I want to save keras model and I want to save weights of each epoch to have best weights. How I do that?
Any help would be appreciated.
code:
def createModel():
input_shape=(1, 22, 5, 3844)
model = Sequential()
#C1
model.add(Conv3D(16, (22, 5, 5), strides=(1, 2, 2), padding='same',activation='relu',data_format= "channels_first", input_shape=input_shape))
model.add(keras.layers.MaxPooling3D(pool_size=(1, 2, 2),data_format= "channels_first", padding='same'))
model.add(BatchNormalization())
#C2
model.add(Conv3D(32, (1, 3, 3), strides=(1, 1,1), padding='same',data_format= "channels_first", activation='relu'))#incertezza se togliere padding
model.add(keras.layers.MaxPooling3D(pool_size=(1,2, 2),data_format= "channels_first", ))
model.add(BatchNormalization())
#C3
model.add(Conv3D(64, (1,3, 3), strides=(1, 1,1), padding='same',data_format= "channels_first", activation='relu'))#incertezza se togliere padding
model.add(keras.layers.MaxPooling3D(pool_size=(1,2, 2),data_format= "channels_first",padding='same' ))
model.add(Dense(64, input_dim=64, kernel_regularizer=regularizers.l2(0.01), activity_regularizer=regularizers.l1(0.01)))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(256, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
opt_adam = keras.optimizers.Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss='categorical_crossentropy', optimizer=opt_adam, metrics=['accuracy'])
return model
Upvotes: 2
Views: 11201
Reputation: 33
model.get_weights()
will return a tensor as a numpy array. You can save those weights in a file with extension .npy
using np.save()
.
To save weights every epoch, you can use something known as callbacks in Keras.
from keras.callbacks import ModelCheckpoint
Before you do model.fit()
, define a checkpoint as below:
checkpoint = ModelCheckpoint(.....)
, assign the argument 'period' as 1 which assigns the periodicity of epochs. This should do it.
Upvotes: 3
Reputation: 3288
You can write a ModelCheckpoint callback using tf.keras.callbacks.ModelCheckpoint
to save weights every epoch. If you are using recent Tensorflow like TF2.1
or later, then You need to use save_freq='epoch'
to save weights every epoch instead of using period=1
as other answer mentioned. Please check entire example here
checkpoint_path = "./training_2/cp-{epoch:04d}.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(
checkpoint_path, verbose=1, save_weights_only=True,
# Save weights, every epoch.
save_freq='epoch')
# Create a basic model instance
model=create_model()
model.save_weights(checkpoint_path.format(epoch=0))
model.fit(x_train, y_train,
epochs = 50, callbacks = [cp_callback],
validation_data = (x_test,y_test),
verbose=0)
Hope this helps. Thanks!
Upvotes: 2
Reputation: 181
You should use model.get_weights() and LambdaCallback function together:
model.get_weights(): Returns a list of all weight tensors in the model, as Numpy arrays.
model = Sequential()
weights = model.get_weights()
LambdaCallback: This callback is constructed with anonymous functions that will be called at the appropriate time
import json
json_log = open('loss_log.json', mode='wt', buffering=1)
json_logging_callback = LambdaCallback(
on_epoch_end=lambda epoch, logs: json_log.write(
json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
on_train_end=lambda logs: json_log.close()
)
model.fit(...,
callbacks=[json_logging_callback])
When your code is considered, you should write callback function and add to your model:
import json
from keras.callbacks import LambdaCallback
json_log = open('loss_log.json', mode='wt', buffering=1)
json_logging_callback = LambdaCallback(
on_epoch_end=lambda epoch, logs: json_log.write(
json.dumps({'epoch': epoch,
'loss': logs['loss'],
'weights': model.get_weights()}) + '\n'),
on_train_end=lambda logs: json_log.close()
)
model.compile(loss='categorical_crossentropy',
optimizer=opt_adam,
metrics=['accuracy'])
model.fit_generator(..., callbacks=[json_logging_callback])
This code write your all weights in all layers to json file. If you want to save weights in specific layer, just change the code with
model.layers[0].get_weights()
Upvotes: 1
Reputation: 149
I am not sure it will work but you can try writing callback and inside callback you can save the weights.
Eg.
checkpoint = ModelCheckpoint("best_model.hdf5", monitor='loss', verbose=1,
save_best_only=True, mode='auto', period=1)
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[checkpoint])
source = https://medium.com/@italojs/saving-your-weights-for-each-epoch-keras-callbacks-b494d9648202
Upvotes: 1