Reputation: 1766
I have a problem I don't know how to fix transform to add new features in order to make more proper forecast. The code below predicts stock prices by Close
value. Data:
Open High Low Close Adj Close Volume
Datetime
2020-03-10 09:30:00+03:00 5033.0 5033.0 4690.0 4840.0 4840.0 702508
2020-03-10 10:30:00+03:00 4840.0 4870.0 4700.0 4746.5 4746.5 1300648
2020-03-10 11:30:00+03:00 4746.5 4783.0 4706.0 4745.5 4745.5 1156482
2020-03-10 12:30:00+03:00 4745.5 4884.0 4730.0 4870.0 4870.0 1213268
2020-03-10 13:30:00+03:00 4874.0 4990.5 4867.5 4886.5 4886.5 1958028
... ... ... ... ... ... ...
2020-04-03 14:30:00+03:00 5177.0 5217.0 5164.0 5211.5 5211.5 385696
2020-04-03 15:30:00+03:00 5212.0 5364.0 5191.0 5269.5 5269.5 1091066
2020-04-03 16:30:00+03:00 5270.0 5297.0 5209.0 5220.5 5220.5 518686
2020-04-03 17:30:00+03:00 5222.0 5271.0 5184.0 5220.5 5220.5 665096
2020-04-03 18:30:00+03:00 5217.5 5223.5 5197.0 5204.5 5204.5 261400
I want to add Volume
and Open
features, but getting error:
predictions = scaler.inverse_transform(predictions)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/preprocessing/_data.py", line 436, in inverse_transform
X -= self.min_
ValueError: non-broadcastable output operand with shape (40,1) doesn't match the broadcast shape (40,3)
Q1: How to change inverse_transform
and what else do I need to change (input_shape
argument maybe) to get correct results?
Q2: The result will be prediction of Close
value. But how do I predict Volume
value also? I guess I need to set model.add(Dense(2))
, but can I do 2 predictions correctly in one code, or I need to execute script separately? How to do that? How do I get Volume
than Open
when model.add(Dense(2))
?
Full code:
from math import sqrt
from numpy import concatenate
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding
from keras.layers import LSTM
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
start = (datetime.now() - timedelta(days=30))
end = (datetime.now() - timedelta(days=0))
df = yf.download(tickers="LKOH.ME", start=start.strftime("%Y-%m-%d"), end=end.strftime("%Y-%m-%d"), interval="60m")
df = df.loc[start.strftime("%Y-%m-%d"):end.strftime("%Y-%m-%d")]
# I need here add another features
# df.filter(['Close', 'Open', 'Volume']) <-- this will make further an error with shapes
data = df.filter(['Close'])
dataset = data.values
#Get the number of rows to train the model on, 40 rows for test
training_data_len = len(dataset) - 40
scaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(dataset)
train_data = scaled_data[0:int(training_data_len), :]
x_train = []
y_train = []
for i in range(60, len(train_data)):
x_train.append(train_data[i-60:i, 0])
y_train.append(train_data[i, 0])
x_train, y_train = np.array(x_train), np.array(y_train)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
model = Sequential()
# should i change to input_shape=(x_train.shape[1], 3) ?
model.add(LSTM(50, return_sequences=True, input_shape=(x_train.shape[1], 1)))
model.add(LSTM(50, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x_train, y_train, batch_size=1, epochs=1)
test_data = scaled_data[training_data_len - 60: , :]
x_test = []
y_test = dataset[training_data_len:, :]
for i in range(60, len(test_data)):
x_test.append(test_data[i-60:i, 0])
x_test = np.array(x_test)
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions) # error here
Upvotes: 1
Views: 541
Reputation: 1668
The problem is that you are fitting MinMaxScaler
on dataset
, then splitting dataset
into x_train
and y_train
and then later on trying to use the inverse_transform
method on the predictions, which have the same shape as y_train
. I suggest you create x_train
and y_train
and fit MinMaxScaler
only to x_train
. y_train
doesn't need to be scaled for the model and that will save you needing to inverse_transform
the predictions completely.
So instead of
#Get the number of rows to train the model on, 40 rows for test
training_data_len = len(dataset) - 40
scaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(dataset)
train_data = scaled_data[0:int(training_data_len), :]
x_train = []
y_train = []
for i in range(60, len(train_data)):
x_train.append(train_data[i-60:i, 0])
y_train.append(train_data[i, 0])
x_train, y_train = np.array(x_train), np.array(y_train)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
Use
#Get the number of rows to train the model on, 40 rows for test
training_data_len = len(dataset) - 40
train_data = scaled_data[0:int(training_data_len), :]
x_train = []
y_train = []
for i in range(60, len(train_data)):
x_train.append(train_data[i-60:i, 0])
y_train.append(train_data[i, 0])
x_train, y_train = np.array(x_train), np.array(y_train)
scaler = MinMaxScaler(feature_range=(0,1))
x_train = scaler.fit_transform(x_train) # Only scaling x_train
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
and just delete the line predictions = scaler.inverse_transform(predictions)
.
The definition of y_test
is inconsistent with y_train
. Specifically, y_test
is defined as y_test = dataset[training_data_len:, :]
which is using all of the columns of dataset
. Instead, to be consistent with y_train
, it should be dataset[training_data_len:, 0]
.
Handling splitting the data is often clearer and less error-prone if done in pandas
:
# Starting with the dataframe 'data'
data = df.filter(['Close', 'Open', 'Volume'])
# Create x/y test/train directly from 'data'
training_data_len = len(data) - 40
x_train = data[['Open', 'Volume']][:training_data_len]
y_train = data.Close[:training_data_len]
x_test = data[['Open', 'Volume']][training_data_len:]
y_test = data.Close[training_data_len:]
# Then confirm you have the expected subsets by checking things like
# shape (and info(), describe(), etc.)
x_train.shape, x_test.shape
> ((160, 2), (40, 2))
y_train.shape, y_test.shape
> ((160,), (40,))
Upvotes: 2