Reputation: 53
I have data like this:
+---+---+---+
| A | B | C |
+---+---+---+
| 1 | 2 | 7 |
| 2 | 2 | 7 |
| 3 | 2 | 1 |
| 3 | 2 | 1 |
| 3 | 2 | 1 |
+---+---+---+
Need to count unique value of each column and report it like below:
+---+---+---+
| A | 3 | 3 |
| A | 2 | 1 |
| A | 1 | 1 |
| B | 2 | 5 |
| C | 1 | 3 |
| C | 7 | 2 |
+---+---+---+
I have no issue when number of column are limit and manually name them, when input file is big it become hard,need to have simple way to have output
here is the code I have
import pandas as pd
df=pd.read_csv('1.csv')
A=df['A']
B=df['B']
C=df['C']
df1=A.value_counts()
df2=B.value_counts()
df3=C.value_counts()
all = {'A': df1,'B': df2,'C': df3}
result = pd.concat(all)
result.to_csv('out.csv')
Upvotes: 1
Views: 159
Reputation: 11
to find unique values of a data-frame.
df.A.unique()
to know the count of the unique values.
len(df.A.unique())
unique create an array to find the count use len() function
Upvotes: 1
Reputation: 1089
You can loop over column and insert them in dictionary.
you can initiate dictionary by all={}
. To be scalable you can read column by colm=df.columns
. This would give you all column in your df.
Try this code:
import pandas as pd
df=pd.read_csv('1.csv')
all={}
colm=df.columns
for i in colm:
all.update({i:df[i].value_counts()})
result = pd.concat(all)
result.to_csv('out.csv')
Upvotes: 1
Reputation: 863291
Use DataFrame.stack
with SeriesGroupBy.value_counts
and then convert Series
to DataFrame
by Series.rename_axis
and Series.reset_index
and :
df=pd.read_csv('1.csv')
result = (df.stack()
.groupby(level=1)
.value_counts()
.rename_axis(['X','Y'])
.reset_index(name='Z'))
print (result)
X Y Z
0 A 3 3
1 A 1 1
2 A 2 1
3 B 2 5
4 C 1 3
5 C 7 2
X Y Z
2 A 3 3
0 A 1 1
1 A 2 1
3 B 2 5
4 C 1 3
5 C 7 2
result.to_csv('out.csv', index=False)
Upvotes: 3