Reputation: 359
How to plot the roc curve with discrete outputs labels as 2 columns?
Using the roc_curve() gives me an error:
ValueError: multilabel-indicator format is not supported
y_prediction = model.predict(test_X)
y_prediction[1]
Out[27]: array([1.0000000e+00, 6.8178085e-12], dtype=float32)
y_prediction.shape
Out[23]: (514, 2)
test_y.shape
Out[24]: (514, 2)
fpr_roc, tpr_roc, thresholds_roc = roc_curve(test_y, y_prediction)
roc_auc = metrics.auc(fpr_roc, tpr_roc)
Upvotes: 4
Views: 2132
Reputation: 81
As roc_curve
function in sklearn only requires positive class probability estimates, you can use the dimension of output, which is related to the positive class.
For example:
preds[:, -1]
Upvotes: 1
Reputation: 11208
From the documentation, the y_true and y_score should be 1-d.
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
y_truearray, shape = [n_samples]
So, just take the labels instead of softmax output.
Add the following lines before roc_curve()
test_y = np.argmax(test_y, axis=-1) # getting the labels
y_prediction = np.argmax(y_prediction, axis=-1) # getting the confidence of postive class
Upvotes: 2