hbgoddard
hbgoddard

Reputation: 148

How to expand a row of tuples in a pandas DataFrame into multiple rows as a multi-index?

Example DataFrame:

>>> idx = pd.MultiIndex.from_arrays([['foo', 'foo', 'bar', 'bar'], ['one', 'two', 'one', 'two']])
>>> df = pd.DataFrame({'Col1': [('a', 'b'), 'c', 'd', 'e'], 'Col2': [('A', 'B'), 'C', 'D', 'E']}, index=index)
>>> print(df)
           Col1    Col2
foo one  (a, b)  (A, B)
    two       c       C
bar one       d       D
    two       e       E

I want to transform the DataFrame by unpacking the row of tuples while keeping everything under its original index, resulting in something like this:

          Col1 Col2
foo one 0    a    A
        1    b    B
    two 0    c    C
bar one 0    d    D
    two 0    e    E

I can unpack the tuples just fine, but I'm just having trouble figuring out how to re-insert the new rows into the DataFrame. This is an example of something I've already tried:

>>> unpacked = pd.DataFrame(df.loc['foo', 'one'].tolist(), index=df.columns).T
>>> print(unpacked)
  Col1 Col2
0    a    A
1    b    B
>>> df.loc['foo', 'one'] = unpacked
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Program Files\Python37\lib\site-packages\pandas\core\indexing.py", line 190, in __setitem__
    self._setitem_with_indexer(indexer, value)
  File "C:\Program Files\Python37\lib\site-packages\pandas\core\indexing.py", line 645, in _setitem_with_indexer
    value = self._align_frame(indexer, value)
  File "C:\Program Files\Python37\lib\site-packages\pandas\core\indexing.py", line 860, in _align_frame
    raise ValueError('Incompatible indexer with DataFrame')
ValueError: Incompatible indexer with DataFrame

It's obvious why this fails, but I'm not sure where to go from here. Is there a way to create a new MultiIndex level during this process that can handle an arbitrary amount of unpacked rows?

Upvotes: 1

Views: 211

Answers (1)

jezrael
jezrael

Reputation: 862581

Use Series.explode in list comprehension with concat and then add new level by GroupBy.cumcount:

df = pd.concat([df[x].explode() for x in df.columns], axis=1)
df = df.set_index(df.groupby(df.index).cumcount(), append=True)
print (df)
          Col1 Col2
foo one 0    a    A
        1    b    B
    two 0    c    C
bar one 0    d    D
    two 0    e    E

Upvotes: 1

Related Questions