Reputation: 122
Is there any way that I can use custom torch.autograd.Function
in a nn.Sequential
object or should I use explicitly an nn.Module
object with forward function. Specifically I am trying to implement a sparse autoencoder and I need to add L1 distance of the code(hidden representation) to the loss.
I have defined custom torch.autograd.Function
L1Penalty below then tried to use it inside a nn.Sequential
object as below. However when I run I got the error TypeError: __main__.L1Penalty is not a Module subclass
How can I solve this issue?
class L1Penalty(torch.autograd.Function):
@staticmethod
def forward(ctx, input, l1weight = 0.1):
ctx.save_for_backward(input)
ctx.l1weight = l1weight
return input, None
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_variables
grad_input = input.clone().sign().mul(ctx.l1weight)
grad_input+=grad_output
return grad_input
model = nn.Sequential(
nn.Linear(10, 10),
nn.ReLU(),
nn.Linear(10, 6),
nn.ReLU(),
# sparsity
L1Penalty(),
nn.Linear(6, 10),
nn.ReLU(),
nn.Linear(10, 10),
nn.ReLU()
).to(device)
Upvotes: 2
Views: 2619
Reputation: 485
The right way to do that would be this
import torch, torch.nn as nn
class L1Penalty(torch.autograd.Function):
@staticmethod
def forward(ctx, input, l1weight = 0.1):
ctx.save_for_backward(input)
ctx.l1weight = l1weight
return input
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_variables
grad_input = input.clone().sign().mul(ctx.l1weight)
grad_input+=grad_output
return grad_input
Creating a Lambda class that acts as a wrapper
class Lambda(nn.Module):
"""
Input: A Function
Returns : A Module that can be used
inside nn.Sequential
"""
def __init__(self, func):
super().__init__()
self.func = func
def forward(self, x): return self.func(x)
TA-DA!
model = nn.Sequential(
nn.Linear(10, 10),
nn.ReLU(),
nn.Linear(10, 6),
nn.ReLU(),
# sparsity
Lambda(L1Penalty.apply),
nn.Linear(6, 10),
nn.ReLU(),
nn.Linear(10, 10),
nn.ReLU())
a = torch.rand(50,10)
b = model(a)
print(b.shape)
Upvotes: 2
Reputation: 2962
The nn.Module
API seems to work fine but you should not return None in your L1Penalty
forward
method.
import torch, torch.nn as nn
class L1Penalty(torch.autograd.Function):
@staticmethod
def forward(ctx, input, l1weight = 0.1):
ctx.save_for_backward(input)
ctx.l1weight = l1weight
return input
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_variables
grad_input = input.clone().sign().mul(ctx.l1weight)
grad_input+=grad_output
return grad_input
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(10,10)
self.fc2 = nn.Linear(10,6)
self.fc3 = nn.Linear(6,10)
self.fc4 = nn.Linear(10,10)
self.relu = nn.ReLU(inplace=True)
self.penalty = L1Penalty()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.penalty.apply(x)
x = self.fc3(x)
x = self.relu(x)
x = self.fc4(x)
x = self.relu(x)
return x
model = Model()
a = torch.rand(50,10)
b = model(a)
print(b.shape)
Upvotes: 1