Reputation: 175
So I've been following Google's official tensorflow guide and trying to build a simple neural network using Keras. But when it comes to training the model, it does not use the entire dataset (with 60000 entries) and instead uses only 1875 entries for training. Any possible fix?
import tensorflow as tf
from tensorflow import keras
import numpy as np
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
train_images = train_images / 255.0
test_images = test_images / 255.0
class_names = ['T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot']
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss= tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
Output:
Epoch 1/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3183 - accuracy: 0.8866
Epoch 2/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3169 - accuracy: 0.8873
Epoch 3/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3144 - accuracy: 0.8885
Epoch 4/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3130 - accuracy: 0.8885
Epoch 5/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3110 - accuracy: 0.8883
Epoch 6/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3090 - accuracy: 0.8888
Epoch 7/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3073 - accuracy: 0.8895
Epoch 8/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3057 - accuracy: 0.8900
Epoch 9/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3040 - accuracy: 0.8905
Epoch 10/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3025 - accuracy: 0.8915
<tensorflow.python.keras.callbacks.History at 0x7fbe0e5aebe0>
Here's the original google colab notebook where I've been working on this: https://colab.research.google.com/drive/1NdtzXHEpiNnelcMaJeEm6zmp34JMcN38
Upvotes: 16
Views: 6448
Reputation: 1
Just use batch_size = 1, if you want the entire 60000 data samples to be visible.
Upvotes: -2
Reputation: 60318
The number 1875
shown during fitting the model is not the training samples; it is the number of batches.
model.fit
includes an optional argument batch_size
, which, according to the documentation:
If unspecified,
batch_size
will default to 32.
So, what happens here is - you fit with the default batch size of 32 (since you have not specified anything different), so the total number of batches for your data is
60000/32 = 1875
Upvotes: 25
Reputation: 1765
It does not train on 1875 samples.
Epoch 1/10
1875/1875 [===
1875 here is the number of steps, not samples. In fit
method, there is an argument, batch_size
. The default value for it is 32
. So 1875*32=60000
. The implementation is correct.
If you train it with batch_size=16
, you will see the number of steps will be 3750
instead of 1875
, since 60000/16=3750
.
Upvotes: 1