Reputation: 595
I want to know if there is a general method for reducing a sympy.set
instance to its 'simplest' form, e.g. with a minimal number of set objects and minimal repetition of set elements, ideally nested in a linear fashion. For example:
>>> from sympy.abc import x,y
>>> from sympy import S
>>> from sympy.calculus.util import continuous_domain
>>>
>>>
>>> f = (1-x)/(2+x) - 3*(x-y)/(1+x+y)
>>>
>>> continuous_domain(f, x, S.Reals)
Union(Complement(Interval.open(-oo, -2), Union(Complement(Intersection(FiniteSet(-2, -y - 1), Reals), FiniteSet((y - 3)/4 - sqrt(y**2 + 22*y + 13)/4, (y - 3)/4 + sqrt(y**2 + 22*y + 13)/4)), Intersection(FiniteSet(-y - 1), Reals))), Complement(Interval.open(-2, oo), Union(Complement(Intersection(FiniteSet(-2, -y - 1), Reals), FiniteSet((y - 3)/4 - sqrt(y**2 + 22*y + 13)/4, (y - 3)/4 + sqrt(y**2 + 22*y + 13)/4)), Intersection(FiniteSet(-y - 1), Reals))))
>>>
>>> # Display the answer with pretty printing
>>> from sympy import init_printing
>>> init_printing()
>>>
>>> continuous_domain(f, x, S.Reals)
⎛ ⎛ ⎛ ⎧ ________________ ________________ ⎫⎞⎞⎞ ⎛ ⎛ ⎛ ⎧ ________________ ________________ ⎫⎞⎞⎞
⎜ ⎜ ⎜ ⎪ ╱ 2 ╱ 2 ⎪⎟⎟⎟ ⎜ ⎜ ⎜ ⎪ ╱ 2 ╱ 2 ⎪⎟⎟⎟
⎜ ⎜ ⎜ ⎨ y - 3 ╲╱ y + 22⋅y + 13 y - 3 ╲╱ y + 22⋅y + 13 ⎬⎟⎟⎟ ⎜ ⎜ ⎜ ⎨ y - 3 ╲╱ y + 22⋅y + 13 y - 3 ╲╱ y + 22⋅y + 13 ⎬⎟⎟⎟
⎜(-∞, -2) \ ⎜(ℝ ∩ {-y - 1}) ∪ ⎜(ℝ ∩ {-2, -y - 1}) \ ⎪ ───── - ───────────────────, ───── + ─────────────────── ⎪⎟⎟⎟ ∪ ⎜(-2, ∞) \ ⎜(ℝ ∩ {-y - 1}) ∪ ⎜(ℝ ∩ {-2, -y - 1}) \ ⎪ ───── - ───────────────────, ───── + ─────────────────── ⎪⎟⎟⎟
⎝ ⎝ ⎝ ⎩ 4 4 4 4 ⎭⎠⎠⎠ ⎝ ⎝ ⎝ ⎩ 4 4 4 4 ⎭⎠⎠⎠
This strikes me as an extremely complex expression for the solution, which can also be written as a series of complements and unions:
>>> Reals - FiniteSet(-y-1) - FiniteSet(-2) + FiniteSet((y - 3)/4 - sqrt(y**2 + 22*y + 13)/4, (y - 3)/4 + sqrt(y**2 + 22*y + 13)/4)
⎧ ________________ ________________ ⎫
⎪ ╱ 2 ╱ 2 ⎪
⎨ y ╲╱ y + 22⋅y + 13 3 y ╲╱ y + 22⋅y + 13 3 ⎬
(ℝ \ {-2, -y - 1}) ∪ ⎪ ─ - ─────────────────── - ─, ─ + ─────────────────── - ─ ⎪
⎩ 4 4 4 4 4 4 ⎭
I have searched the documentation but have not found any methods to accomplish simplification of complex set expressions such as this one. Do any such methods exist? If not, how can I write a function which allows me to accomplish this?
Upvotes: 0
Views: 210
Reputation: 14480
It seems this has improved on sympy master since the last release (1.5). With master I get
In [1]: from sympy.calculus.util import continuous_domain
In [2]: x, y = symbols('x, y')
In [3]: f = (1-x)/(2+x) - 3*(x-y)/(1+x+y)
In [4]: continuous_domain(f, x, S.Reals)
Out[4]: ((-∞, -2) \ (ℝ ∩ {-y - 1})) ∪ ((-2, ∞) \ (ℝ ∩ {-y - 1}))
You can improve this by declaring y to be real:
In [5]: x, y = symbols('x, y', real=True)
In [6]: f = (1-x)/(2+x) - 3*(x-y)/(1+x+y)
In [7]: continuous_domain(f, x, S.Reals)
Out[7]: ((-∞, -2) ∪ (-2, ∞)) \ {-y - 1}
Upvotes: 1