sdaau
sdaau

Reputation: 38649

Pandas Int64 .loc cannot do slice indexing?

Consider this simple example:

>>> import pandas as pd
>>>
dfA = pd.DataFrame({
  "key":[1,3,6,10,15,21],
  "columnA":[10,20,30,40,50,60],
  "columnB":[100,200,300,400,500,600],
  "columnC":[110,202,330,404,550,606],
})

>>> dfA
   key  columnA  columnB  columnC
0    1       10      100      110
1    3       20      200      202
2    6       30      300      330
3   10       40      400      404
4   15       50      500      550
5   21       60      600      606

If I want to use .loc here, it works fine:

>>> dfA.set_index('key').loc[2:16]
     columnA  columnB  columnC
key
3         20      200      202
6         30      300      330
10        40      400      404
15        50      500      550

... but if I do a "cast" (.astype) to Int64, it fails:

>>> dfA.astype('Int64').set_index('key').loc[2:16]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexing.py", line 1768, in __getitem__
    return self._getitem_axis(maybe_callable, axis=axis)
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexing.py", line 1912, in _getitem_axis
    return self._get_slice_axis(key, axis=axis)
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexing.py", line 1796, in _get_slice_axis
    indexer = labels.slice_indexer(
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 4712, in slice_indexer
    start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind)
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 4925, in slice_locs
    start_slice = self.get_slice_bound(start, "left", kind)
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 4837, in get_slice_bound
    label = self._maybe_cast_slice_bound(label, side, kind)
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 4789, in _maybe_cast_slice_bound
    self._invalid_indexer("slice", label)
  File "C:/msys64/mingw64/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 3075, in _invalid_indexer
    raise TypeError(
TypeError: cannot do slice indexing on <class 'pandas.core.indexes.base.Index'> with these indexers [2] of <class 'int'>
>>>

Why does this happen - and can I have this kind of .loc indexing with Int64 too? (I have to use Int64, because I read in .csv data which has missing values, and I don't want the values casted to floats - but I'd still like to use .loc as in the above case)


EDIT: a bit more info:

>>> dfA.astype('Int64').loc(0)[0]['key']
1
>>> type(dfA.astype('Int64').loc(0)[0]['key'])
<class 'numpy.int64'>

Ok, so the actual numbers in case of dtype 'Int64' are of class 'numpy.int64' - but that still cannot be used for .loc in this case:

>>> import numpy as np
>>> dfA.astype('Int64').set_index('key').loc[np.int64(2):np.int64(2)]
...
TypeError: cannot do slice indexing on <class 'pandas.core.indexes.base.Index'> with these indexers [2] of <class 'numpy.int64'>

Upvotes: 1

Views: 1029

Answers (1)

gosuto
gosuto

Reputation: 5741

You can circumvent this by making key the index first and then converting to Int64:

dfA.set_index('key').astype('Int64').loc[2:16]
     columnA  columnB  columnC
key                           
3         20      200      202
6         30      300      330
10        40      400      404
15        50      500      550

Or converting only your key column to old-fashioned int64:

df.index = df['key'].astype('int64')

That is, presuming it does not have <NA> values like your other columns apparently do.

Upvotes: 2

Related Questions