Reputation: 1
I'm encountering a problem with unit testing in Python. Specifically, when I try to mock a function my code imports, variables assigned to the output of that function get assigned to a MagicMock object instead of the mock-function's return_value. I've been digging through the docs for python's unittest library, but am not having any luck.
The following is the code I want to test:
from production_class import function_A, function_B, function_M
class MyClass:
def do_something(self):
variable = functionB()
if variable:
do_other_stuff()
else:
do_something_else
this is what I've tried:
@mock.patch(path.to.MyClass.functionB)
@mock.patch(<other dependencies in MyClass>)
def test_do_something(self, functionB_mock):
functionB_mock.return_value = None # or False, or 'foo' or whatever.
myClass = MyClass()
myClass.do_something()
self.assertTrue(else_block_was_executed)
The issue I have is that when the test gets to variable = functionB
in MyClass, the variable doesn't get set to my return value; it gets set to a MagicMock object (and so the if-statement always evaluates to True). How do I mock an imported function such that when executed, variables actually get set to the return value and not the MagicMock object itself?
Upvotes: 0
Views: 3311
Reputation: 1
What I wound up doing was changing the import statements in MyClass to import the object instead of the individual methods. I was then able to mock the object without any trouble.
More explicitly I changed MyClass to look like this:
import production_class as production_class
class MyClass:
def do_something(self):
variable = production_class.functionB()
if variable:
do_other_stuff()
else:
do_something_else
and changed my test to
@mock.patch(path.to.MyClass.production_class)
def test_do_something(self, prod_class_mock):
prod_class_mock.functionB.return_value = None
myClass = MyClass()
myClass.do_something()
self.assertTrue(else_block_was_executed)
Upvotes: 0
Reputation: 7539
We'd have to see what import path you're actually using with path.to.MyClass.functionB
. When mocking objects, you don't necessarily use the path directly to where the object is located, but the one that the intepreter sees when recursively importing modules.
For example, if your test imports MyClass
from myclass.py
, and that file imports functionB
from production_class.py
, the mock path would be myclass.functionB
, instead of production_class.functionB
.
Then there's the issue that you need additional mocks of MyClass.do_other_stuff
and MyClass.do_something_else
in to check whether MyClass
called the correct downstream method, based on the return value of functionB
.
Here's a working example that tests both possible return values of functionB
, and whether they call the correct downstream method:
myclass.py
from production_class import functionA, functionB, functionM
class MyClass:
def do_something(self):
variable = functionB()
if variable:
self.do_other_stuff()
else:
self.do_something_else()
def do_other_stuff(self):
pass
def do_something_else(self):
pass
production_class.py
import random
def functionA():
pass
def functionB():
return random.choice([True, False])
def functionM():
pass
test_myclass.py
import unittest
from unittest.mock import patch
from myclass import MyClass
class MyTest(unittest.TestCase):
@patch('myclass.functionB')
@patch('myclass.MyClass.do_something_else')
def test_do_something_calls_do_something_else(self, do_something_else_mock, functionB_mock):
functionB_mock.return_value = False
instance = MyClass()
instance.do_something()
do_something_else_mock.assert_called()
@patch('myclass.functionB')
@patch('myclass.MyClass.do_other_stuff')
def test_do_something_calls_do_other_stuff(self, do_other_stuff_mock, functionB_mock):
functionB_mock.return_value = True
instance = MyClass()
instance.do_something()
do_other_stuff_mock.assert_called()
if __name__ == '__main__':
unittest.main()
calling python test_myclass.py
results in:
..
----------------------------------------------------------------------
Ran 2 tests in 0.002s
OK
Upvotes: 3