Reputation: 843
QUESTION
Very often, one wants to enrich a raw dataset with derived features. I.e., new columns need to be created from preexisting ones. How does one do that in an efficient (and preferably in-place) way with a tf.Dataset
?
PS: I tried to play around tf.data.Dataset.map()
, tf.data.Dataset.apply()
, and tf.map()
but can't find the right syntax that does what I'm illustrating below.
MINIMUM WORKING EXAMPLE
To show what I want to do, I'll use pandas' apply()
. For example, I'm trying to add a feature that is the length of the embark_town
feature in the Titanic dataset.
import pandas as pd
import tensorflow as tf # v. 2.0+
# Load the Titanic dataset
source = tf.keras.utils.get_file(
"train.csv",
"https://storage.googleapis.com/tf-datasets/titanic/train.csv")
# Only select two features and one target for this example.
dataset = tf.data.experimental.make_csv_dataset(
source, batch_size=5, label_name="survived",
select_columns=["embark_town", "age", "survived"],
num_epochs=1, ignore_errors=True, shuffle=False)
# Add the derived feature `embark_town_len` via pandas.
batch, _ = next(iter(dataset))
batch = pd.DataFrame(batch)
print("Raw data:")
print(batch)
batch['embark_town_len'] = batch.apply(lambda x: len(x["embark_town"]), axis=1)
print("\nEnriched data:")
print(batch)
which produces
Raw data:
age embark_town
0 22.0 b'Southampton'
1 38.0 b'Cherbourg'
2 26.0 b'Southampton'
3 35.0 b'Southampton'
4 28.0 b'Queenstown'
Enriched data:
age embark_town embark_town_len
0 22.0 b'Southampton' 11
1 38.0 b'Cherbourg' 9
2 26.0 b'Southampton' 11
3 35.0 b'Southampton' 11
4 28.0 b'Queenstown' 10
Note that although I'm using pandas' apply()
here, what I'm really looking for is something that works directly on the whole tf.Dataset
, not just a batch therein.
Upvotes: 0
Views: 1771
Reputation: 2744
Assuming tensorflow 2.0
:
import tensorflow as tf
cities_ds = tf.data.Dataset.from_tensor_slices(["Rome","Brussels"])
ages_ds = tf.data.Dataset.from_tensor_slices([5,7])
ds = tf.data.Dataset.zip((cities_ds, ages_ds))
ds = ds.map(lambda city, age: (city, age, tf.strings.length(city)))
for i in ds:
print(i[0].numpy(), i[1].numpy(), i[2].numpy())
Upvotes: 1