Reputation: 1577
I am trying to plot line plots(Drifted brownian motion) for different values of mu and sigma, I have a function that iterates a list of possible mu values and possible sigma values and it's supposed to then return the resulting plots. The problem is I am unsure how to make the subplots
return the required number of rows. I have given it the correct nrows
and ncols
but the problem comes in with the indexing. Does anyone have a trick to solve this?
I have provided the code and the error message below,
# Drifted BM for varying values mu and sigma respectively
def DriftedBMTest2(nTraj=50,T=5.0,dt=0.01,n=5, sigma = [0.1,1.0,2], mulist=[0,0.5,1,1.5], ValFSize=(18,14)):
nMu = len(mulist)
nSigma = len(mulist)
# Discretize, dt = time step = $t_{j+1}- t_{j}$
dt = T/(n-1)
# Loop on different value sigma
for z in range(nSigma):
# Loop on different value Mu
for k in range(nMu):
n=int(T/dt)
x=np.zeros(n+1,float)
# Create plot space
temp = nSigma*nMu/2
plt.subplot(temp,2,k+1)
plt.title("Drifted BM $\sigma$={}, $\mu$={}".format(sigma[z],mulist[k]))
plt.xlabel(r'$t$')
plt.ylabel(r'$W_t$');
# Container for colours for each trajectory
colors = plt.cm.jet(np.linspace(0,1,nTraj))
# Generate many trajectories
for j in range(nTraj):
# Time simulation
# Add the time * constant(mu)
for i in range(n):
x[i+1]=x[i]+np.sqrt(dt)*np.random.randn() + i*mulist[k]
# Scale Each Tradjectory
x = x * sigma[z]
# Plot trajectory just computed
plt.plot(np.linspace(0,T,n+1),x,'b-',alpha=0.3, color=colors[j], lw=3.0)
DriftedBMTest2( sigma = [1,2], mulist=[-2,1] )
I then get the first two plots but not all of them and the error below.
MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
Sorry if this is a bad question, I am new to Python but any help would be appreciated.
Upvotes: 1
Views: 742
Reputation: 39072
Try adding fig = plt.figure()
between the two for loops
for z in range(nSigma):
# Loop on different value Mu
fig = plt.figure() # <---- Line added here
for k in range(nMu):
If that doesn't give the desired layout, you can try moving it to the inner for loop as
for z in range(nSigma):
# Loop on different value Mu
for k in range(nMu):
fig = plt.figure() # <---- Line added here
Upvotes: 1