Reputation: 1460
Is there a solution to find out the missing values based on column
for example :
Field_name Field_Type Field_Id
Message type identifier M 0
Nan M 1
Bitmap secondary C 1
Nan C 2
Processing code M 3
Nan M 4
Amount-Settlement C 5
So here I want to know the missing values in the column Field_name and the Field_Type = 'M'
, Ignoring the missing values in Field_Type = 'C'
Expected Output :
Field_name Field_Type Field_Id
Nan M 1
Nan M 4
Edit : Can we do this for a list of dataframes ?
data_list = [df1,df2,df3]
output : result [[missngvalues in df1],[missngvalues in df2],[missngvalues in df3]]
Upvotes: 7
Views: 338
Reputation: 863741
If nan
are missing values chain mask Series.isna
and Series.eq
for ==
by &
for botwise AND
:
df[df.Field_name.isna() & df.Field_Type.eq('M')]
If nan
are strings compare both by Series.eq
:
df[df.Field_name.eq('Nan') & df.Field_Type.eq('M')]
print (df)
Field_name Field_Type Field_Id
1 Nan M 1
5 Nan M 4
EDIT:
If working with list of DataFrame
s:
data_list = [df1,df2,df3]
result = [df[df.Field_name.isna() & df.Field_Type.eq('M')] for df in data_list]
Upvotes: 2