Reputation: 43
I am using uCOS II, Keil uVision 5, and a TIVA board with the TM4C123GH6PM MCU on it. I was given a the port for uCOS II as well as a blank project file to get started. I wrote the tasks needed and the program works correctly but now I am interested in implementing interrupts and trying to understand how they can coexist with an RTOS. This is all done in C.
Interrupts do not work; they simply don't fire up. There are instances where the other tasks won't execute either. The core issue is that I don't really understand how interrupts can coexist with the RTOS. I've written code (in both assembly and C) on baremetal where interrupts work perfectly and I fully understand how they work when there is no layer in-between the code and the cpu.
I looked at the libraries included with the uCOS port and found something useful:
I am just stuck at this point and I've been playing with the code, moving stuff around, trying to find a clue/lead to solving this issue. I can't even debug the rtos because uVision does not support uCOS and I can't use step-debugging because interrupts are firing at every clock-tick and the PC is being changed constantly so the IDE can't follow it.
I know IAR Embedded Workbench has support for uCOS-II and I have the app on my laptop and I tried setting up a project but I was only given a port/starter project for Keil and I don't know how to set one up for IAR EW. The only ports on Micrium's website are for the TM4C129 series and I tried using that to start an IAR EW project but I couldn't get it to work (libraries not being linked/missing files).
Upvotes: 1
Views: 955
Reputation: 1468
Does anybody have any experience with working with these two components (the rtos and the board)?
I'm afraid I haven't worked with uCos (but with other OSes, mainly SysBios and FreeRTOS) and I haven't worked with Tiva (but with Sitara AM335x) yet. Still, I think some hints below may be helpful for you (and apply in spite of the different implementations you are using).
What should I try next?
These are the steps I recommend you to consider. You can put them into any order you find most helpful.
interrupt priorities of ISRs that call RTOS library APIs must not be higher than the level that is taken into account by RTOS, otherwise the RTOS-internal states may get corrupted, and anything can happen. Please check your OS documentation.
Please verify the position of the interrupt vector table and its contents:
Does every vector table entry point to one of the ISR wrapper handlers provided by the RTOS, or do you also find "independent" ISR implementations? If so, what do the latter do?
If you find pointers into third-party libraries you don't have the code for, don't give up. These can be as important...
Even more important than including the right header to bsp_Int...
APIs is that interrupt management of all software components runs through one unique API, e.g., the bsp_Int...
one.
Your assumptions about app.c
/main()
sound reasonable. Please make sure that you also know about every component that accesses interrupts indirectly.
- AppTaskStart, which is the very first task to execute within the kernel domain, calls bsp_init (in which, bsp_IntInit is called to initialize the interrupt table and more) and performs other initialization tasks
Please check what happens if you place a breakpoint at the top of every task function. Then you should be able to watch all tasks start and run into its breakpoint once.
- The way I've set up interrupts without a kernel before, was using the Tivaware library (in C) provided by TI. It has functions for creating interrupts, specifying the trigger (i.e rising/falling edge, timer overflow, etc.), and enabling them. This method works and I thought is what I should be using to set up the interrupt I want
You should make sure that the Tivaware library only uses interrupts in a way that is compatible to your RTOS. You can do this by RTM or reading the sources.
- So I used the tivaware library to set up interrupts on one of the gpio ports (to which, mechanical switches are connected) on the rising edge. The code for this, as well as other code to start the port f peripheral, set the switches pins to input, and enable pull-ups, is included in bsp_init (bsp.c) which is called from AppTaskStart which is called from main. So far everything works perfectly, the rtos initiliazes, and all its tasks execute accordingly. When I try to move the code directly to the main and flash the program onto the board, the rtos initializes (leds blink) but then the tasks don't execute. Any ideas why that might be?
Could it be that an electronic problem at one of the controller pins connected to the interrupt starts triggering that interrupt all the time?
- If I add the code to [...]
Have you tried creating a minimal reproducible example? When you do this, you can enhance the effect by simultaneously performing rubber duck debugging.
- Do I need to setup/register/enable interrupts using the tivaware library as well as register and enable them using the board support package (bsp) library? The way I understand this so far is that the bsp is registering/enabling interrupts for the kernel only whereas the tivaware code is enabling them by directly writing to the registers so the latter is needed to setup the cpu portion of the interrupts and the former is needed to setup the OS portion of the interrupts. But I don't know. I really don't understand how they've designed incorporating interrupts under uCOS II. They do specify how the interrupt handler should be written and what macros to use but nothing else.
This sounds dangerous. I haven't worked with Tiva yet, but instead with another TI chip (AM335x). There we had a similar situation, different libraries accessing different/overlapping parts of the same system resource by means of different abstraction layers. Situation only started improving when we tidied up the mess of abstraction layers ignoring each other and ported some code to a common abstraction layering scheme.
And some PS:
Upvotes: 1