Reputation: 10051
Given a excel file with format as follows:
Reading with pd.read_clipboard
, I get:
year 2018 Unnamed: 2 2019 Unnamed: 4
0 city quantity price quantity price
1 bj 10 2 4 7
2 sh 6 8 3 4
Just wondering if it's possible to convert to the following format with Pandas:
year city quantity price
0 2018 bj 10 2
1 2019 bj 4 7
2 2018 sh 6 8
3 2019 sh 3 4
Upvotes: 1
Views: 1828
Reputation: 863266
I think here is best convert excel file to DataFrame
with MultiIndex in columns
and first column as index:
df = pd.read_excel(file, header=[0,1], index_col=[0])
print (df)
year 2018 2019
city quantity price quantity price
bj 10 2 4 7
sh 6 8 3 4
print (df.columns)
MultiIndex([('2018', 'quantity'),
('2018', 'price'),
('2019', 'quantity'),
('2019', 'price')],
names=['year', 'city'])
Then reshape by DataFrame.stack
, change order of levels by DataFrame.swaplevel
, set index and columns names by DataFrame.rename_axis
and last convert index
to columns, and if encessary convert year to integers:
df1 = (df.stack(0)
.swaplevel(0,1)
.rename_axis(index=['year','city'], columns=None)
.reset_index()
.assign(year=lambda x: x['year'].astype(int)))
print (df1)
year city price quantity
0 2018 bj 2 10
1 2019 bj 7 4
2 2018 sh 8 6
3 2019 sh 4 3
Upvotes: 4