Reputation: 155
I need to do some calculations with a NetCDF file. So I have two variables with following dimensions and sizes:
A [time | 1] x [lev | 12] x [lat | 84] x [lon | 228]
B [lev | 12]
What I need is to produce a new array, C
, that is shaped as (1,12,84,228)
where B
contents are propagated to all dimensions of A
.
Usually, this is easily done in NCL with the conform function. I am not sure what is the equivalent of this in Python.
Thank you.
Upvotes: 1
Views: 406
Reputation: 341
The numpy.broadcast_to function can do something like this, although in this case it does require B
to have a couple of extra trailing size 1 dimension added to it to satisfy the numpy broadcasting rules
>>> import numpy
>>> B = numpy.arange(12).reshape(12, 1, 1)
>>> B
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> B = B.reshape(12, 1, 1)
>>> B.shape
(12, 1, 1)
>>> C = numpy.broadcast_to(b, (1, 12, 84, 228))
>>> C.shape
(1, 12, 84, 228)
>>> C[0, :, 0, 0]
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> C[-1, :, -1, -1]
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
Upvotes: 3