Reputation: 336
i'm new to machine learning and pytorch. I'm using imgaug library for images augmentation (https://github.com/aleju/imgaug)
I have this code:
class ImgAugTransform:
def __init__(self):
self.aug = seq = iaa.Sequential(
[
# Apply the following augmenters to most images
iaa.Fliplr(0.5), # horizontally flip 50% of all images
iaa.Flipud(0.2), # vertically flip 20% of all images
random_aug_use(iaa.CropAndPad( # crop images by -5% to 10% of their height/width
percent=(-0.1, 0.2),
pad_mode=ia.ALL,
pad_cval=(0.,255)
)),
random_aug_use(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
cval=(0, 255), # if mode is constant, use a cval between 0 and 255
mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
))
],
random_order=True)
def __call__(self, img):
img = np.array(img)
return self.aug.augment_image(img)
train_transforms = ImgAugTransform()
train_dataset = torchvision.datasets.ImageFolder(train_dir, train_transforms)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=batch_size)
So now i cant do this:
X_batch, y_batch = next(iter(train_dataloader))
I get error:
ValueError: some of the strides of a given numpy array are negative. This is currently not supported, but will be added in future releases.
Upvotes: 0
Views: 1255
Reputation: 1885
I came across this error as well. The solution that worked to me was:
def __call__(self, img):
img = np.array(img)
return self.aug.augment_image(img).copy()
But, if you're composing imgaug
with torchvision.transforms
you can do something like:
def __call__(self, img):
img = self.aug.augment_image(np.array(img))
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(self.normalization[0],
self.normalization[1]),
])
return transforms(img.copy())
Upvotes: 1
Reputation: 114786
You should make your augmented numpy arrays contiguous again. try modifying your augmenter code to:
def __call__(self, img):
img = np.array(img)
return np.ascontiguousarray(self.aug.augment_image(img))
Upvotes: 0