Reputation: 64
I have a class (MyClass) which contains a queue (self.msg_queue) of actions that need to be run and I have multiple sources of input that can add tasks to the queue.
Right now I have three functions that I want to run concurrently:
Process description: After the class has joined the network, I have it spawn three threads (one for each of the above functions). Each threaded function adds items from the queue with the syntax "self.msg_queue.put(message)" and removes items from the queue with "self.msg_queue.get_nowait()".
Problem description: The issue I am having is that it seems that each thread is modifying its own queue object (they are not sharing the queue, msg_queue, of the class of which they, the functions, are all members).
I am not familiar enough with Multiprocessing to know what the important error messages are; however, it is stating that it cannot pickle a weakref object (it gives no indication of which object is the weakref object), and that within the queue.put() call the line "self._sem.acquire(block, timeout) yields a '[WinError 5] Access is denied'" error. Would it be safe to assume that this failure in the queue's reference not copying over properly?
[I am using Python 3.7.2 and the Multiprocessing package's Process and Queue]
[I have seen multiple Q/As about having threads shuttle information between classes--create a master harness that generates a queue and then pass that queue as an argument to each thread. If the functions didn't have to use other functions from MyClass I could see adapting this strategy by having those functions take in a queue and use a local variable rather than class variables.]
[I am fairly confident that this error is not the result of passing my queue to the tkinter object as my unit tests on how my GUI modifies its caller's queue work fine]
Below is a minimal reproducible example for the queue's error:
from multiprocessing import Queue
from multiprocessing import Process
import queue
import time
class MyTest:
def __init__(self):
self.my_q = Queue()
self.counter = 0
def input_function_A(self):
while True:
self.my_q.put(self.counter)
self.counter = self.counter + 1
time.sleep(0.2)
def input_function_B(self):
while True:
self.counter = 0
self.my_q.put(self.counter)
time.sleep(1)
def output_function(self):
while True:
try:
var = self.my_q.get_nowait()
except queue.Empty:
var = -1
except:
break
print(var)
time.sleep(1)
def run(self):
process_A = Process(target=self.input_function_A)
process_B = Process(target=self.input_function_B)
process_C = Process(target=self.output_function)
process_A.start()
process_B.start()
process_C.start()
# without this it generates the WinError:
# with this it still behaves as if the two input functions do not modify the queue
process_C.join()
if __name__ == '__main__':
test = MyTest()
test.run()
Upvotes: 3
Views: 887
Reputation: 110271
Indeed - these are not "threads" - these are "processes" - while if you were using multithreading, and not multiprocessing, the self.my_q
instance would be the same object, placed at the same memory space on the computer,
multiprocessing does a fork of the process, and any data in the original process (the one in execution in the "run" call) will be duplicated when it is used - so, each subprocess will see its own "Queue" instance, unrelated to the others.
The correct way to have various process share a multiprocessing.Queue object is to pass it as a parameter to the target methods. The simpler way to reorganize your code so that it works is thus:
from multiprocessing import Queue
from multiprocessing import Process
import queue
import time
class MyTest:
def __init__(self):
self.my_q = Queue()
self.counter = 0
def input_function_A(self, queue):
while True:
queue.put(self.counter)
self.counter = self.counter + 1
time.sleep(0.2)
def input_function_B(self, queue):
while True:
self.counter = 0
queue.put(self.counter)
time.sleep(1)
def output_function(self, queue):
while True:
try:
var = queue.get_nowait()
except queue.Empty:
var = -1
except:
break
print(var)
time.sleep(1)
def run(self):
process_A = Process(target=self.input_function_A, args=(queue,))
process_B = Process(target=self.input_function_B, args=(queue,))
process_C = Process(target=self.output_function, args=(queue,))
process_A.start()
process_B.start()
process_C.start()
# without this it generates the WinError:
# with this it still behaves as if the two input functions do not modify the queue
process_C.join()
if __name__ == '__main__':
test = MyTest()
test.run()
As you can see, since your class is not actually sharing any data through the instance's attributes, this "class" design does not make much sense for your application - but for grouping the different workers in the same code block.
It would be possible to have a magic-multiprocess-class that would have some internal method to actually start the worker-methods and share the Queue instance - so if you have a lot of those in a project, there would be a lot less boilerplate.
Something along:
from multiprocessing import Queue
from multiprocessing import Process
import time
class MPWorkerBase:
def __init__(self, *args, **kw):
self.queue = None
self.is_parent_process = False
self.is_child_process = False
self.processes = []
# ensure this can be used as a colaborative mixin
super().__init__(*args, **kw)
def run(self):
if self.is_parent_process or self.is_child_process:
# workers already initialized
return
self.queue = Queue()
processes = []
cls = self.__class__
for name in dir(cls):
method = getattr(cls, name)
if callable(method) and getattr(method, "_MP_worker", False):
process = Process(target=self._start_worker, args=(self.queue, name))
self.processes.append(process)
process.start()
# Setting these attributes here ensure the child processes have the initial values for them.
self.is_parent_process = True
self.processes = processes
def _start_worker(self, queue, method_name):
# this method is called in a new spawned process - attribute
# changes here no longer reflect attributes on the
# object in the initial process
# overwrite queue in this process with the queue object sent over the wire:
self.queue = queue
self.is_child_process = True
# call the worker method
getattr(self, method_name)()
def __del__(self):
for process in self.processes:
process.join()
def worker(func):
"""decorator to mark a method as a worker that should
run in its own subprocess
"""
func._MP_worker = True
return func
class MyTest(MPWorkerBase):
def __init__(self):
super().__init__()
self.counter = 0
@worker
def input_function_A(self):
while True:
self.queue.put(self.counter)
self.counter = self.counter + 1
time.sleep(0.2)
@worker
def input_function_B(self):
while True:
self.counter = 0
self.queue.put(self.counter)
time.sleep(1)
@worker
def output_function(self):
while True:
try:
var = self.queue.get_nowait()
except queue.Empty:
var = -1
except:
break
print(var)
time.sleep(1)
if __name__ == '__main__':
test = MyTest()
test.run()
Upvotes: 1