Reputation: 3657
I have pretrained weights as np.array of shape (3, 3, 3, 64)
. I want to initialize this Tensorflow CNN with those weights using set_weights()
like I show below.
However, when I try that, the following error pops up: ValueError: You called set_weights(weights) on layer "conv2d_3" with a weight list of length 3, but the layer was expecting 2 weights. Provided weights: [[[[-0.15836713 -0.178757 0.16782044 ...
model = models.Sequential()
model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.layers[0].set_weights(weights)
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(256, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(256, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(512, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(512, (3, 3), activation='relu'))
model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dense(4, activation='softmax'))
print(model.summary())
adam = optimizers.Adam(learning_rate=0.0001, amsgrad=False)
model.compile(loss='categorical_crossentropy',
optimizer=adam,
metrics=['accuracy'])
history = model.fit_generator(
train_generator,
steps_per_epoch=np.ceil(nb_train_samples/batch_size),
epochs=epochs,
validation_data=validation_generator,
validation_steps=np.ceil(nb_validation_samples / batch_size),
class_weight=class_weight
)
My question is: how do I pass those (3, 3, 3, 64)
shaped weights to initialize that CNN? I have already checked the weight shapes required for each layer and the shapes I am trying to pass and the required shape match.
Upvotes: 3
Views: 11965
Reputation: 8585
You could just use kernel_initializer
and bias_initializer
arguments like this:
import numpy as np
# init_kernel and init_bias are initialization weights that you have
init_kernel = np.random.normal(0, 1, (3, 3, 3, 64))
init_bias = np.zeros((64,))
kernel_initializer = tf.keras.initializers.constant(init_kernel)
bias_initializer = tf.keras.initializers.constant(init_bias)
conv_layer = tf.keras.layers.Conv2D(64, (3, 3),
activation='relu',
input_shape=(224, 224, 3),
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer)
Note the kernel's and bias' shapes that I've chosen. The values with which you initialise your layer must have the exact same shapes.
Upvotes: 5