Reputation: 10011
Given a dataframe as follows:
city district date price
0 bj cy 2019/3/1 NaN
1 bj cy 2019/4/1 6.0
2 sh hp 2019/2/1 4.0
3 sh hp 2019/3/1 4.0
4 bj hd 2019/3/1 7.0
5 bj hd 2019/4/1 NaN
How could I remove groups of city
and date
, if they didn't have entry of 2019/4/1
.
At this case, groups of sh
and hp
should be removed, since it only has data for 2019/2/1
and 2019/3/1
.
My desired output will like this:
city district date price
0 bj cy 2019/3/1 NaN
1 bj cy 2019/4/1 6.0
2 bj hd 2019/3/1 7.0
3 bj hd 2019/4/1 NaN
Sincere thanks for your kind help.
Upvotes: 1
Views: 72
Reputation: 862481
Solution with DataFrameGroupBy.filter
:
df['date'] = pd.to_datetime(df['date'])
f = lambda x: x['date'].eq('2019-04-01').any()
df = df.groupby(['city','district']).filter(f)
print (df)
city district date price
0 bj cy 2019-03-01 NaN
1 bj cy 2019-04-01 6.0
4 bj hd 2019-03-01 7.0
5 bj hd 2019-04-01 NaN
Faster solution with GroupBy.transform
and GroupBy.any
:
df = (df[df.assign(t = df['date'].eq('2019-04-01'))
.groupby(['city','district'])['t'].transform('any')])
print (df)
city district date price
0 bj cy 2019-03-01 NaN
1 bj cy 2019-04-01 6.0
4 bj hd 2019-03-01 7.0
5 bj hd 2019-04-01 NaN
Upvotes: 1