Reputation: 16147
I'm migrating some legacy code from R to Python and I'm having trouble matching the quantile results with numpy percentile.
Given the following list of numbers:
a1 = [
5.75,6.13333333333333,7.13636363636364,9,10.1,4.80952380952381,8.82926829268293,4.7906976744186,3.83333333333333,6,6.1,
8.88235294117647,30,5.7,3.98507462686567,6.83333333333333,8.39805825242718,4.78260869565217,7.26356589147287,5.67857142857143,
3.58333333333333,6.69230769230769,14.3333333333333,14.3333333333333,5.125,5.16216216216216,5.36363636363636,10.7142857142857,
4.90909090909091,7.5,8,6,6.93939393939394,10.4,6,6.8,5.33333333333333,10.3076923076923,4.5625,5.4,6.44,3.36363636363636,
11.1666666666667,4.5,7.35714285714286,10.6363636363636,9.26746031746032,3.83333333333333,5.75,9.14285714285714,8.27272727272727,
5,5.92307692307692,5.23076923076923,4.09375,6.25,4.63888888888889,6.07142857142857,5,5.42222222222222,3.93892045454545,4.8,
8.71428571428571,6.25925925925926,4.12,5.30769230769231,4.26086956521739,5.22222222222222,4.64285714285714,5,3.64705882352941,
5.33333333333333,3.65217391304348,3.54166666666667,10.0952380952381,3.38235294117647,8.67123287671233,2.66666666666667,3.5,4.875,
4.5,6.2,5.45454545454545,4.89189189189189,4.71428571428571,1,5.33333333333333,6.09090909090909,4.36756756756757,6,5.17197452229299,
4.48717948717949,5.01219512195122,4.83098591549296,5.25,8.52,5.47692307692308,5.45454545454545,8.6578947368421,8.35714285714286,3.25,
8.5,4,5.95652173913043,7.05882352941176,7.5,8.6,8.49122807017544,5.14285714285714,4,13.3294117647059,9.55172413793103,5.57446808510638,
4.5,8,4.11764705882353,3.9,5.14285714285714,6,4.66666666666667,6,3.75,4.93333333333333,4.5,5.21666666666667,6.53125,6,7,7.28333333333333,
7.34615384615385,7.15277777777778,8.07936507936508,11.609756097561
]
Using quantile in R such that
quantile(a1, probs=.05, type=2)
Gives a results of 3.541667
Trying all of the interpolation methods in numpy to find the same result:
{x:np.percentile(a1,q=5, interpolation=x) for x in ['linear','lower','higher','nearest','midpoint']}
Yields
{'linear': 3.566666666666666,
'lower': 3.54166666666667,
'higher': 3.58333333333333,
'nearest': 3.58333333333333,
'midpoint': 3.5625}
As we can see the lower
interpolation method returns the same result as R quantile type 2
However again with a different quantile in R we get different results:
quantile(a1, probs=.95, type=2)
Gives a result of 10.71429
And with numpy:
{x:np.percentile(a1,q=95, interpolation=x) for x in ['linear','lower','higher','nearest','midpoint']}
Yields
{'linear': 10.667532467532439,
'lower': 10.6363636363636,
'higher': 10.7142857142857,
'nearest': 10.6363636363636,
'midpoint': 10.67532467532465}
In this case the higher
interpolation method returns the same result
I'm hoping that someone familiar enough w/the R quantile types can help me reproduce the same quantile logic in numpy.
Upvotes: 2
Views: 737
Reputation: 59549
You can implement this yourself. With type=2
it's a rather simple calculation. You either take the next highest order statistic or at a discontinuity (i.e. 100 values and you want the p=0.06, which falls exactly on the 6th value) you take the average of that order statistic and the next greatest order statistic.
import numpy as np
def R_type2(arr, p):
"""
arr : array-like
p : float between [0, 1]
"""
#m=0 for Q_2(p) in R
x = np.sort(arr)
n = len(x)
aleph = n*p
k = np.floor(np.array(aleph).clip(1, n-1)).astype(int)
gamma = {False: 1, True: 0.5}.get(aleph==k) # Discontinuity or not
# Deal with case where it should be smallest value
if aleph < 1:
return x[k-1] # x[0]
else:
return (1.-gamma)*x[k-1] + gamma*x[k]
R_type2(a1, 0.05)
#3.54166666666667
R_type2(a1, 0.95)
#10.7142857142857
A word of caution. k
will be an integer while n*p
is a float. In general it's a very bad idea to do aleph==k
because this leads to problems with floating point inaccuracies. For instance with 100 numbers p=0.07
is NOT considered a discontinuity because 0.07
cannot be represented precisely. However, because R seems to implement a pure equality check I left it like the above for consistency.
I personally would favor changing from the equaltiy: {False: 1, True: 0.5}.get(aleph==k)
to {False: 1, True: 0.5}.get(np.isclose(aleph,k))
that way floating point issues don't become a problem.
Upvotes: 1