Reputation: 300
I am currently working on the speed up for my python functions.
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
def distance(u,v,lon1,lat1):
lat2, lon2 = lat1.copy(), lon1.copy()
lat2[v>0], lat2[v<0], = lat1[v>0]+1, lat1[v<0]-1,
lon2[u>0], lon2[u<0], = lon1[u>0]+1, lon1[u<0]-1,
dlon = lon2 - lon1
dlat = lat2 - lat1
return dlon, dlat
As you can see, this is the simple code that is based on the numpy. I read most of the articles on the internet, what they said are just put @numba.jit as the decorator in front of the function, and then I can use Numba to speed up my code.
Here is the test I have done.
u = np.random.randn(10000)
v = np.random.randn(10000)
lon1 = np.random.uniform(-99,-96,10000)
lat1 = np.random.uniform( 23, 25,10000)
print(u)
%%timeit
for i in range(10000):
distance(u,v,lon1,lat1)
5.61 s ± 58.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
@numba.njit()
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
@numba.njit()
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
@numba.njit()
def distance(u, v, lon1, lat1, R=6.371*1e6):
lat2, lon2 = lat1.copy(), lon1.copy()
lat2[v>0], lat2[v<0], = lat1[v>0]+1, lat1[v<0]-1,
lon2[u>0], lon2[u<0], = lon1[u>0]+1, lon1[u<0]-1,
dlat = lat2 - lat1
dlon = lon2 - lon1
return d_lon(lat1,lat2,dlon), d_lat(dlat)
%%timeit
for i in range(10000):
a,b = distance(u,v,lon1,lat1)
7.76 s ± 64.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
As you can see above, the computational speed of my Numba case is slower than my pure python case. Could anyone please help me to solve this?
ps: version of numba
llvmlite 0.32.0rc1
numba 0.49.0rc2
According to his answer, even Numba now is smart enough, if we want the code is going to be Numba-decorated, it is better to use plain "Fortran"/"C" type of styles. Below is presenting the computational time comparison between different methods that I was thinking.
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
def distance(u,v,lon1,lat1):
lat2, lon2 = lat1.copy(), lon1.copy()
lat2[v>0], lat2[v<0], = lat1[v>0]+1, lat1[v<0]-1,
lon2[u>0], lon2[u<0], = lon1[u>0]+1, lon1[u<0]-1,
dlon = lon2 - lon1
dlat = lat2 - lat1
return dlon, dlat
%%timeit
for i in range(10000):
distance(u,v,lon1,lat1)
@numba.jit(nogil=True)
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
@numba.jit(nogil=True)
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
def distance(u, v, lon1, lat1, R=6.371*1e6):
lat2, lon2 = lat1.copy(), lon1.copy()
lat2[v>0], lat2[v<0], = lat1[v>0]+1, lat1[v<0]-1,
lon2[u>0], lon2[u<0], = lon1[u>0]+1, lon1[u<0]-1,
dlat = lat2 - lat1
dlon = lon2 - lon1
return d_lon(lat1,lat2,dlon), d_lat(dlat)
%%timeit
for i in range(10000):
a,b = distance(u,v,lon1,lat1)
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
@numba.njit(nogil=True)
def distance(u, v, lon1, lat1, R=6.371*1e6):
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
lat2, lon2 = lat1.copy(), lon1.copy()
lat2[v>0], lat2[v<0], = lat1[v>0]+1, lat1[v<0]-1,
lon2[u>0], lon2[u<0], = lon1[u>0]+1, lon1[u<0]-1,
dlat = d_lat(lat2 - lat1)
dlon = d_lon(lat1,lat2,lon2 - lon1)
return dlon, dlat
%%timeit
for i in range(10000):
a,b = distance(u,v,lon1,lat1)
@numba.njit()
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
@numba.njit()
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
@numba.njit()
def distance(u, v, lon1, lat1):
lon2 = np.empty_like(lon1)
lat2 = np.empty_like(lat1)
dlon = np.empty_like(lon1)
dlat = np.empty_like(lat1)
for i in range(len(v)):
vi = v[i]
if vi > 0:
lat2[i] = lat1[i]+1
dlat[i] = 1
elif vi < 0:
lat2[i] = lat1[i]-1
dlat[i] = -1
else:
lat2[i] = lat1[i]
dlat[i] = 0
for i in range(len(u)):
ui = u[i]
if ui > 0:
lon2[i] = lon1[i]+1
dlon[i] = 1
elif ui < 0:
lon2[i] = lon1[i]-1
dlon[i] = -1
else:
lon2[i] = lon1[i]
dlon[i] = 0
return d_lon(lat1,lat2,dlon), d_lat(dlat)
%%timeit
for i in range(10000):
distance(u,v,lon1,lat1)
Upvotes: 0
Views: 792
Reputation: 701
There are a couple issues that jump out.
First, your calculations in the distance
function are unnecessarily complicated, and written in a style (with lots of fancy indexing e.g. lat2[v>0]
) that may not be ideal for the Numba compiler. Although Numba is getting smarter, I find that there is still a high return to writing code in a simple, loop-oriented way.
Second, Numba can be slowed down a little by optional arguments. I found that this was true primarily for the optional R
in your distance
function.
Fixing these two issues - in particular, replacing your vectorized code with simpler loops that minimize operations - we get code of the form
@numba.njit()
def d_lat(dlat,R=6.371*1e6):
return 2 * R * np.sqrt(np.sin(np.deg2rad(dlat)/2)**2)
@numba.njit()
def d_lon(lat1,lat2,dlon,R=6.371*1e6):
return 2 * R * np.sqrt(np.cos(np.deg2rad(lat1)) *
np.cos(np.deg2rad(lat2)) *
np.sin(np.deg2rad(dlon)/2)**2)
@numba.njit()
def distance(u, v, lon1, lat1):
lon2 = np.empty_like(lon1)
lat2 = np.empty_like(lat1)
dlon = np.empty_like(lon1)
dlat = np.empty_like(lat1)
for i in range(len(v)):
vi = v[i]
if vi > 0:
lat2[i] = lat1[i]+1
dlat[i] = 1
elif vi < 0:
lat2[i] = lat1[i]-1
dlat[i] = -1
else:
lat2[i] = lat1[i]
dlat[i] = 0
for i in range(len(u)):
ui = u[i]
if ui > 0:
lon2[i] = lon1[i]+1
dlon[i] = 1
elif ui < 0:
lon2[i] = lon1[i]-1
dlon[i] = -1
else:
lon2[i] = lon1[i]
dlon[i] = 0
return d_lon(lat1,lat2,dlon), d_lat(dlat)
On my (slower) system, this decreases the time after the initial cost of compilation from around 7 seconds to around 4 seconds. At that point, I believe the cost is dominated by the raw cost of all the functions np.sin
, np.cos
, np.exp
, etc.
Upvotes: 1