Reputation: 1888
I am running a convolutional neural network from a course on Deep Learning on Udemy but when I do so I can see that my GPU clock spikes but the GPU percentage usage is still 5% and even one epoch over 8000 images of mean size 300*400 takes a time of about 5 minutes.
I have Windows 10, RAM - 8GB, GPU - Nvidia Geforce Gtx 1060 6GB
The full code is here:
# Convolutional neural network
from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,Flatten,Dense
# Initializing CNN
cl = Sequential()
# Convolution
cl.add(Conv2D(32,3,3, input_shape=(64,64,3),activation='relu'))
# Polling
cl.add(MaxPooling2D(pool_size=(2,2)))
# Flattening
cl.add(Flatten())
# Full Connection
cl.add(Dense(128,activation='relu'))
cl.add(Dense(1,activation='sigmoid'))
# Compiling the CNN
cl.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
# Fitting the CNN
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 100,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 100,
class_mode = 'binary')
cl.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)
Upvotes: 0
Views: 144
Reputation: 1383
The same thing happened to me. If you download gpu-z you will see the GPU load is actually much higher than it says on task manager.
Upvotes: 0