Reputation: 39
I am trying to find the mean by event for each round (R1,R2,R3,R4). The rounds not played are unfortunately represented in 3 different ways (0, - or empty cell).
event plyr R1 R2 R3 R4
0 Houston Dave 67 90.0 70 72
1 Houston Bobx 69 69.0 69 69
2 Houston Carlx 69 71.0 71 71
3 Miamixx Cliff 67 70.0 70 70
4 Miamixx Dean 70 71.0 71 71
5 Miamixx Clive 69 69.0 - 0
6 Miamixx Patxx 71 70.0 - 0
7 Atlanta Phil 67 70.0 70 72
8 Atlanta Dave 69 NaN 71 73
9 Atlanta Bobx 69 NaN - 0
I have tried replacing the 0 and - with NaN but still get varying results
df['R3'] = df['R3'].replace(['0', '-'], np.nan) df['R4'] = df['R4'].replace(['0', '-'], np.nan)
The results
df.groupby('event')['R1','R2', 'R3', 'R4'].mean()
R1 R2 R4
event
Atlanta 68.333333 70.000000 48.333333
Houston 68.333333 76.666667 70.666667
Miamixx 69.250000 70.000000 35.250000
Upvotes: 1
Views: 1890
Reputation: 1957
The groupby
mean aggregation will exclude NaN
values but include zeros. So you need to replace by 0
or keep the NaN
depending on the result you're after.
This will set all the -
and NaN
values to 0
:
cols = ['R1', 'R2', 'R3', 'R4']
for col in cols:
df[col] = np.where((df[col]=='-') | (df[col].isnull()==True), 0, df[col])
df[col] = pd.to_numeric(df[col])
df.groupby('event').mean()
If you want NaN
instead of 0
simply replace the 0
in np.where()
with np.NaN
.
Upvotes: 1
Reputation: 294536
to_csv
/read_csv
Read the csv
with appropriate NaN
values specified then fillna
with 0
from io import StringIO as io_
df = pd.read_csv(io_(df.to_csv(index=False)), na_values=['-']).fillna(0)
df.groupby('event')[['R1', 'R2', 'R3', 'R4']].mean()
R1 R2 R3 R4
event
Atlanta 68.333333 23.333333 47.00 48.333333
Houston 68.333333 76.666667 70.00 70.666667
Miamixx 69.250000 70.000000 35.25 35.250000
pd.to_numeric
df.filter(like='R').apply(pd.to_numeric, errors='coerce') \
.fillna(0).groupby(df.event).mean()
R1 R2 R3 R4
event
Atlanta 68.333333 23.333333 47.00 48.333333
Houston 68.333333 76.666667 70.00 70.666667
Miamixx 69.250000 70.000000 35.25 35.250000
Upvotes: 0